Skip to main content

Advertisement

Log in

New Experimental Rig to Investigate Abrasive–Corrosive Characteristics of Metals in Aqueous Media

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A new tribometer to investigate a conjoint effect of three-body abrasion and corrosion has been developed. In this design, a flat wear sample is loaded against a rotating cylindrical disc counterface and the abrasive slurry is delivered to the contact interface. Capabilities of the newly developed tribometer have been assessed through conducting abrasion–corrosion tests involving simultaneous electrochemical measurements. In this work, the stability of the passive layer on stainless steel under three-body abrasive wear in a near neutral electrolyte was investigated using potentiodynamic polarization tests. 316L Stainless Steel wear samples were abraded by coarse garnet particles in an aerated sodium sulphate electrolyte. The effects of load and speed on the polarization curves and passivity of 316L steel were determined. It was found that under abrasion–corrosion conditions 316L steel became more thermodynamically active and the passive corrosion rate has increased. Increasing the contact load resulted in a small increase in the passive corrosion current, while increasing the rotating speed had the opposite effect of decreasing the current. Linear polarization resistance method was used to analyse corrosion current changes with time during abrasion–corrosion testing. The existence of three distinct stages was explained by the third-body effect on the corrosion potential and current. First stage was revealed by continuous decrease of corrosion potential. Then, the potential reached a plateau for the second and third stages. In the first and second stages, particle constraint in the contact zone plays the major role and a linear rise in corrosion current with time has been recorded. After a certain amount of surface roughening, no further increase in particles entrapment is expected. Therefore, in the third stage steady-state corrosion current values are anticipated. The rig developed can also be used to simulate two-body abrasion–corrosion. The capabilities of the new rig have been compared against other experimental set-ups used in studies of combined abrasion–corrosion behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Landolt, D.: Electrochemical and materials aspects of tribocorrosion systems. J. Phys. D Appl. Phys. 39, 3121–3127 (2006)

    Article  CAS  ADS  Google Scholar 

  2. Neville, A., Reyes, M., Xu, H.: Examining corrosion effects and corrosion/erosion interactions on metallic materials in aqueous slurries. Tribol. Int. 35, 643–650 (2002)

    Article  CAS  Google Scholar 

  3. Stack, M.M., James, J.S., Lu, Q.: Erosion–corrosion of chromium steel in a rotating cylinder electrode system: some comments on particle size effects. Wear 256, 557–564 (2004)

    Article  CAS  Google Scholar 

  4. Wood, R.J.K.: Tribo-corrosion of coatings: a review. J. Phys. D Appl. Phys. 40, 5502–5521 (2007)

    Article  CAS  ADS  Google Scholar 

  5. Ponthiaux, P., Wenger, F., Drees, D., Celis, J.P.: Electrochemical techniques for studying tribocorrosion processes. Wear 256, 459–468 (2004)

    Article  CAS  Google Scholar 

  6. Assi, F., Bohni, H.: Study of wear–corrosion synergy with a new microelectrochemical technique. Wear 233–235, 505–514 (1999)

    Article  Google Scholar 

  7. Watson, S.W., Friedersdorf, F.J., Madsen, B.W., Cramer, S.D.: Methods of measuring wear-corrosion synergism. Wear 181–183, 476–484 (1995)

    Google Scholar 

  8. Fang, C.K., Huang, C.C., Chuang, T.H.: Synergistic effects of wear and corrosion for Al2O3 particulate-reinforced 6061 aluminium matrix composites. Metall. Mater. Trans. A 30A, 643–651 (1999)

    Article  CAS  Google Scholar 

  9. Endo, K., Komai, K., Shiomi, H.: Effects of dissolved oxygen in saline corrosive wear of steel. Wear 30, 285–297 (1974)

    Article  CAS  Google Scholar 

  10. Babaev, S.G., Amanov, Y.A.: Abrasive wear of 40kh steel in a crude oil medium. Chem. Petrol. Eng. 14, 849–852 (1978)

    Article  Google Scholar 

  11. Allen, C., Ball, A., Protheroe, B.E.: The abrasive–corrosive wear of stainless steels. Wear 74, 287–305 (1981)

    Article  CAS  Google Scholar 

  12. Noel, R.E.J., Ball, A.: On the synergistic effects of abrasion and corrosion during wear. Wear 87, 351–361 (1983)

    Article  Google Scholar 

  13. Batchelor, A.W., Stachowiak, G.W.: Predicting synergism between corrosion and abrasive wear. Wear 123, 281–291 (1988)

    Article  CAS  Google Scholar 

  14. Abdelkader, H., Elraghy, S.M.: Wear-corrosion mechanisms in stainless steel in chloride media. Corros. Sci. 26, 647–653 (1986)

    Article  CAS  Google Scholar 

  15. Yahagi, Y., Mizutani, Y.: Corrosive wear of carbon and austenitic stainless steels in NaCl solution. Wear 110, 401–408 (1986)

    Article  CAS  Google Scholar 

  16. Hong, M., Pyun, S.: Corrosive wear behaviour of 304-L stainless steel in 1 N H2S04 solution. Part 1: effect of applied potential. Wear 147, 59–67 (1991)

    Article  CAS  Google Scholar 

  17. Garcia, I., Drees, D., Celis, J.P.: Corrosion-wear of passivating materials in sliding contacts based on a concept of active wear track area. Wear 249, 452–460 (2001)

    Article  CAS  Google Scholar 

  18. Hedayat, A., Yannacopoulos, S., Postlethwaite, J., Sangal, S.: Aqueous corrosion of plain carbon steel during sliding wear. Wear 154, 167–176 (1992)

    Article  CAS  Google Scholar 

  19. Mischler, S., Rosset, E., Stachowiak, G.W., Landolt, D.: Effect of sulphuric acid concentration on the rate of tribocorrosion of iron. Wear 167, 101–108 (1993)

    Article  CAS  Google Scholar 

  20. Wu, P., Celis, J.P.: Electrochemical noise measurements on stainless steel during corrosion–wear in sliding contacts. Wear 256, 480–490 (2004)

    Article  CAS  Google Scholar 

  21. Latona, N., Fetherston, P., Chen, A., Sridharan, K., Dodd, R.A.: Wear-corrosion comparisons of passivating vs nonpassivating alloys in aerated 3.5% aqueous solutions of sodium chloride. Corrosion 57, 884–888 (2001)

    Article  CAS  Google Scholar 

  22. Yan, Y., Neville, A., Dowson, D.: Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments. Wear 263, 1105–1111 (2007)

    Article  CAS  Google Scholar 

  23. Yu, S.Y., Ishii, H., Chuang, T.H.: Corrosive wear of SiC whisker- and 6061 aluminum alloy composites particulate-reinforced. Metall. Mater. Trans. A 27A, 2653–2662 (1996)

    Article  CAS  ADS  Google Scholar 

  24. Vieira, A.C., Ribeiro, A.R., Rocha, L.A., Celis, J.P.: Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva. Wear 261, 994–1001 (2006)

    Article  CAS  Google Scholar 

  25. Lambrechts, P., Goovaerts, K., Bharadwaj, D., Munck, J.D., Bergmans, L., Peumans, M., Meerbeek, B.V.: Degradation of tooth structure and restorative materials: a review. Wear 261, 980–986 (2006)

    Article  CAS  Google Scholar 

  26. Sun, D., Wharton, J.A., Wood, R.J.K., Mab, L., Rainforth, W.M.: Microabrasion–corrosion of cast CoCrMo alloy in simulated body fluids. Tribol. Int. 42, 99–110 (2009)

    Article  CAS  Google Scholar 

  27. Newman, R.C.: Understanding corrosion of stainless steel. Corrosion 57, 1030–1041 (2001)

    Article  CAS  Google Scholar 

  28. Silverman, D.C.: Rotating cylinder electrode for velocity sensitivity testing. Corrosion 40, 220–1041 (1984)

    CAS  Google Scholar 

  29. Tian, B.R., Cheng, Y.F.: Electrochemical corrosion behaviour of X-65 steel in the simulated oil sand slurry I: effects of hydrodynamic condition. Corros. Sci. 50(3), 773–779 (2008)

    CAS  Google Scholar 

  30. Neville, A., Hodgkiess, T., Dallas, J.T.: A study of the erosion–corrosion behaviour of engineering steels for marine pumping applications. Wear 187, 497–507 (1995)

    Article  Google Scholar 

  31. Clark, H.M.: Particle velocity and size effects in laboratory slurry erosion measurements. Tribol. Int. 35, 617–624 (2002)

    Article  CAS  Google Scholar 

  32. Harvey, T.J., Wharton, J.A., Wood, R.J.K.: Development of synergy model for erosion–corrosion of carbon steel in a slurry pot. Tribology 1, 33–47 (2007)

    CAS  Google Scholar 

  33. Meuter, P.: Protecting pumps against abrasive wear. World Pumps 2006(482), 18–20 (2006)

    Article  Google Scholar 

  34. Landolt, D., Mischler, S., Stemp, M., Barril, S.: Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear 256, 517–524 (2004)

    Article  CAS  Google Scholar 

  35. Gant, A.J., Gee, M.G., May, A.T.: Microabrasion of WC–Co hardmetals in corrosive media. Wear 256, 954–962 (2004)

    Article  CAS  Google Scholar 

  36. Stack, M.M., Jawan, H., Mathew, M.T.: On the construction of micro-abrasion maps for a steel/polymer couple in corrosive environments. Tribol. Int. 38, 848–856 (2005)

    Article  CAS  Google Scholar 

  37. Bello, J.O., Wood, R.J.K., Wharton, J.A.: Synergistic effects of micro-abrasion–corrosion of UNS S30403, S31603 and S32760 stainless steels. Wear 263, 149–159 (2007)

    Article  CAS  Google Scholar 

  38. Barton, N. A.: Erosion in elbows in hydrocarbon production systems: review document. Health and Safety Executive, UK (2003)

  39. Janikowski, D.S.: Selecting tubing materials for power generation heat exchangers. Mater. Perform. 47, 58–63 (2008)

    CAS  Google Scholar 

  40. Lepisto, T.T., Mantyla, T.A.: Degradation of TZP ceramics in humid atmosphere. In: Clark, D.E., Zoitos, B.K. (eds.) Corrosion of Glass, Ceramics and Ceramic Superconductors, pp. 492–513. Noyes Publications, NJ (1992)

    Google Scholar 

  41. Stachowiak, G.B., Stachowiak, G.W.: The effects of particle characteristics on three-body abrasive wear. Wear 249, 201–207 (2001)

    Article  CAS  Google Scholar 

  42. Tylczak, J.H.: Friction, lubrication and wear technology. In: Henry, S.D. (ed.), ASM Handbook, Vol. 18, pp. 184–190. ASM International (1992)

  43. Beverskog, B., Puigdomenech, I.: Pourbaix diagram. Corrosion 55, 1077–1088 (1999)

    Article  CAS  Google Scholar 

  44. Stephen, T.W.: An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists. PairODocs Publications, WI (1994)

  45. Scully, J.R.: The polarization resistance method for determination of instantaneous corrosion rates. In: Schweitzer, P.A. (ed.) Electrochemical Techniques in Corrosion Science and Engineering, pp. 125–150. CRC Press (2003)

  46. Walter, G.W.: A review of impedance plot methods used for corrosion performance analysis of painted metals. Corros. Sci. 26, 681–703 (1986)

    Article  CAS  Google Scholar 

  47. Rammelt, U., Reinhard, G.: On the applicability of a constant phase element (CPE) to the estimation of roughness of solid metal electrodes. Electrochim. Acta 35, 1045–1049 (2001)

    Article  Google Scholar 

  48. Bardwell, J.A., Sproule, G.I., MacDougall, B., Graham, M.J., Davenport, A.J., Isaacs, H.S.: In situ XANES detection of Cr(VI) in the passive film on Fe-26Cr. J. Electrochem. Soc. 139, 371–373 (1992)

    Article  CAS  Google Scholar 

  49. Bojinov, M., Fabricius, G., Kinnunen, P., Laitinen, T., Makela, K., Saario, T., Sundholm, G.: The mechanism of transpassive dissolution of Ni–Cr alloys in sulphate solutions. Electrochim. Acta 45, 2791–2802 (2000)

    Article  CAS  Google Scholar 

  50. Bojinov, M., Fabricius, G., Laitinen, T., Saario, T.: Transpassivity mechanism of iron-chromium–molybdenum alloys studied by AC impedance, DC resistance and RRDE measurements. Electrochim. Acta 44, 4331–4343 (1999)

    Article  CAS  Google Scholar 

  51. Betova, I., Bojinov, M., Laitinen, T., Makela, K., Pohjanne, P., Saario, T.: The transpassive dissolution mechanism of highly alloyed stainless steels I. Experimental results and modelling procedure. Corros. Sci. 44, 2675–2697 (2002)

    Article  CAS  Google Scholar 

  52. Schmuki, P., Virtanen, S., Isaacs, H.S., Ryan, M.R., Davenport, A.J., Bohni, H., Stenberge, T.: Electrochemical behaviour of Cr2O3/Fe2O3 artificial passive films studied by in situ XANES. J. Electrochem. Soc. 145, 791–801 (1998)

    Article  CAS  Google Scholar 

  53. Ali, S.I., Abbaschian, G.J.: The chloride corrosion of austenitic stainless steels and of an inconel alloy in hot acidic media. Corros. Sci. 18, 15–19 (1978)

    Article  CAS  Google Scholar 

  54. El-Egamy, S.S., Badaway, W.A.: Passivity and passivity breakdown of 304 stainless steel in alkaline sodium sulphate solutions. J. Appl. Electrochem. 34, 1153–1158 (2004)

    Article  CAS  Google Scholar 

  55. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least square procedures. Anal. Chem. 36, 1627–1639 (1964)

    Article  CAS  ADS  Google Scholar 

  56. Stern, M., Geary, A.L.: Electrochemical polarization. J. Electrochem. Soc. 104, 56–59 (1957)

    Article  CAS  Google Scholar 

  57. Iwabuchi, A., Tsukamoto, T., Shimizu, T., Yashiro, H.: The mechanism of corrosive wear of an austenitic stainless steel in an aqueous electrolyte solution. Tribol. Trans. 41, 96–102 (1998)

    Article  CAS  Google Scholar 

  58. Mischler, S.: Triboelectrochemical techniques and interpretation methods in tribocorrosion: a comparative evaluation. Tribol. Int. 41, 573–583 (2008)

    Article  CAS  Google Scholar 

  59. Landolt, D., Mischler, S., Stemp, M.: Electrochemical methods in tribocorrosion: a critical appraisal. Electrochim. Acta 46, 3913–3929 (2001)

    Article  CAS  Google Scholar 

  60. Gant, A.J., Gee, M.G., May, A.T.: The evaluation of tribocorrosion synergy for WC-Co hardmetals in low stress abrasion. Wear 256, 500–516 (2004)

    Article  CAS  Google Scholar 

  61. Stachowiak, G.B., Stachowiak, G.W.: Wear mechanisms in ball-cratering tests with large abrasive particles. Wear 256, 600–607 (2004)

    Article  CAS  Google Scholar 

  62. Stachowiak, G.B., Stachowiak, G.W., Celliers, O.: Ball-cratering abrasion tests of high-Cr white cast irons. Tribol. Int. 38, 1076–1087 (2005)

    Article  CAS  Google Scholar 

  63. Rabinowicz, E., Dunn, L.A., Russel, P.G.: A study of abrasive wear under three-body abrasive conditions. Wear 4, 345–355 (1961)

    Article  Google Scholar 

  64. Misra, A., Finnie, I.: Correlations between two-body and three-body abrasion and erosion of metals. Wear 68, 33–39 (1981)

    Article  Google Scholar 

  65. Kelly, D.A., Hutchings, I.M.: A new method for measurement of particle abrasivity. Wear 250, 76–80 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the School of Mechanical Engineering, University of Western Australia, for its support during the preparation of this manuscript. The postgraduate scholarship provided by the CRC Centre for Integrated Engineering Asset Management (CIEAM) is greatly acknowledged. Special thanks to Mr Dennis Brown of the School of Mechanical Engineering Workshop for the manufacturing of the test rig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salasi, M., Stachowiak, G.B. & Stachowiak, G.W. New Experimental Rig to Investigate Abrasive–Corrosive Characteristics of Metals in Aqueous Media. Tribol Lett 40, 71–84 (2010). https://doi.org/10.1007/s11249-010-9640-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9640-2

Keywords

Navigation