Skip to main content

Advertisement

Log in

Effect of Water on the Mechanical and Frictional Behaviors of Human Fingernails

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The fingernails are generally used for a variety of functions including protecting, foraging, and gripping. The achievement of these functions depends on the mechanical properties of fingernails. In this article, the deformation recovery of human fingernails in water was investigated. The effect of water on the mechanical and frictional behaviors of fingernails was studied using a nano indentation and scratch tester. Owing to the swelling of fingernail matrix, the indents under a peak indentation load of 20 N and scratches under a constant load of 70 mN can be fully recovered after the fingernail samples were dipped in water for 10 min. The recovery of these deformations in water reveals obvious anisotropy on the different sections of fingernails. The recovery speed of the indents and scratches on the surface of fingernails is the fastest, and the slowest recovery happens for the deformations on the longitudinal section. With the water in hydrated fingernails evaporating in air, the microhardness of fingernails shows a quick increase in the first 100 min and levels off after 200 min. Finally, the microhardness of fingernails in the fully dehydrated state is 2–3 times larger than that in the hydrated state. The water in fingernails reduces the fluctuation of friction force on surface and protects the surface of fingernails from scratch damage. Owing to the special orientation of filament in the intermediate layer of fingernails, the friction on the cross section of fingernail shows an anisotropic behavior. Either on the dehydrated or hydrated fingernails, the friction coefficient along the parallel direction of filament is lower than that along the vertical direction of filament.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ross, M.H., Kaye, G.I., Pawlina, W.: Histology: A Text and Atlas. Lippincott Williams & Wilkins   (2002)

  2. Hamrick, M.W.: Functional and adaptive significance of primate pads and claws: evidence from New World anthropoids. Am. J. Phys. Anthropol. 106, 113–127 (1998)

    Article  CAS  PubMed  Google Scholar 

  3. Seki, Y., Schneider, M.S., Meyers, M.A.: Structure and mechanical behavior of a toucan beak. Acta Mater. 53, 5281–5296 (2005)

    Article  CAS  Google Scholar 

  4. Bonser, R.H.C.: Hydration sensitivity of ostrich claw keratin. J. Mater. Sci. Lett. 21, 1563–1564 (2002)

    Article  CAS  Google Scholar 

  5. Kitchener, A., Vincent, J.F.V.: Composite theory and the effect of water on the stiffness of horn keratin. J. Mater. Sci. 22, 1385–1389 (1987)

    Article  CAS  ADS  Google Scholar 

  6. Taylor, A.M., Bonser, R.H.C., Farrent, J.W.: The influence of hydration on the tensile and compressive properties of avian keratinous tissues. J. Mater. Sci. 39, 939–942 (2004)

    Article  CAS  ADS  Google Scholar 

  7. Kitchener, A.: Effect of water on the linear viscoelasticity of horn sheath keratin. J. Mater. Sci. Lett. 6, 321–322 (1987)

    Article  CAS  Google Scholar 

  8. Bertram, J.E.A., Gosline, J.M.: Functional design of horse hoof keratin: the modulation of mechanical properties through hydration effects. J. Exp. Biol. 130, 121–136 (1987)

    CAS  PubMed  Google Scholar 

  9. Soligo, C., Muller, A.E.: Nails and claws in primate evolution. J. Hum. Evol. 36, 97–114 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. Achten, G.: Histopathology of the nail. In: Pierre, M. (ed.) The Nail, pp. 1–14. Churchill Livingstone, Edinburgh (1981)

  11. Baden, H.P.: The physical properties of nail. J. Invest. Dermatol. 55, 115–122 (1970)

    Article  CAS  PubMed  Google Scholar 

  12. Caputo, R., Gasparini, G., Contini, D.: A freeze-fracture study of the human nail plate. Arch. Dermatol. Res. 272, 117–125 (1982)

    Article  CAS  PubMed  Google Scholar 

  13. Farren, L., Shayler, S., Ennos, A.R.: The fracture properties and mechanical design of human fingernails. J. Exp. Biol. 207, 735–741 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Garson, J.C., Baltenneck, F., Leroy, F., Riekel, C., Müller, M.: Histological structure of human nail as studied by synchrotron X-ray microdiffraction. Cell. Mol. Biol. 46(6), 1025–1034 (2000)

    CAS  PubMed  Google Scholar 

  15. Farran, L., Ennos, A.R., Eichhorn, S.J.: Microindentation and nanoindentation of human fingernails at varying relative humidity. J. Mater. Res. 24, 980–984 (2009)

    Article  CAS  ADS  Google Scholar 

  16. Leffell, D.J.: Total Skin: The Definitive Guide to Whole Skin Care for Life. Hyperion, New York (2000)

    Google Scholar 

  17. Egawa, M., Ozaki, Y., Takahashi, M.: In vivo measurement of water content of the fingernail and its seasonal change. Skin Res. Technol. 12, 126–132 (2005)

    Google Scholar 

  18. Gniadecka, M., Nielsen, O.F., Christensen, D.H., Wulf, H.C.: Structure of water, proteins, and lipids in intact human skin, hair, and nail. J. Invest. Dermatol. 110, 393–398 (1998)

    Article  CAS  PubMed  Google Scholar 

  19. Fraser, R.D.B., Macrae, T.P.: Molecular structure and mechanical properties of keratins. Symp. Soc. Exp. Biol. 34, 211–246 (1980)

    CAS  PubMed  Google Scholar 

  20. Finlay, A.Y., Prost, P., Keith, A.D., Snipes, W.: An assessment of factors influencing flexibility of human fingernails. Br. J. Dermatol. 103, 357–365 (1980)

    Article  CAS  PubMed  Google Scholar 

  21. Farran, L., Ennos, A.R., Eichhorn, S.J.: The effect of humidity on the fracture properties of human fingernails. J. Exp. Biol. 211, 3677–3681 (2008)

    Article  PubMed  Google Scholar 

  22. Zheng, J., Zhou, Z.R.: Effect of age on the friction and wear behaviors of human teeth. Tribol. Int. 39(3), 266–273 (2006)

    Article  CAS  Google Scholar 

  23. Paolo, U.G., Thomas, M., Matthew, T.: Gender-linked differences in human skin. J. Dermatol. Sci. 55(3), 144–149 (2009)

    Article  Google Scholar 

  24. Guo, B., Liao, D., Li, X., Zeng, Y., Yang, Q.: Age and gender related changes in biomechanical properties of healthy human costal cartilage. Clin. Biomech. 22(3), 292–297 (2007)

    Article  Google Scholar 

  25. Bonser, R.H.C.: Melanin and the abrasion resistance of feathers. Condor 97, 590–591 (1995)

    Article  Google Scholar 

  26. Zheng, J., Zhou, Z.R., Zhang, J., Li, H., Yu, H.Y.: On the friction and wear behaviour of human tooth enamel and dentin. Wear 255, 967–974 (2003)

    Article  CAS  Google Scholar 

  27. Schulz, B., Chan, D., Bäckström, J., Rübhausen, M., Wittern, K.P., Wessel, S., Wepf, R., Williams, S.: Hydration dynamics of human fingernails: an ellipsometric study. Phys. Rev. E 65(6), 061913.1–061913.7 (2002)

    Article  ADS  Google Scholar 

  28. Moran, P., Towler, M.R., Chowdhury, S., Saunders, J., German, M.J., Lawson, N.S., Pollock, H.M., Pillay, I., Lyons, D.: Preliminary work on the development of a novel detection method for osteoporosis. J. Mater. Sci. Mater. Med. 18, 969–976 (2007)

    Article  CAS  PubMed  Google Scholar 

  29. Qian, L.M., Li, M., Zhou, Z.R., Yang, H., Shi, X.Y.: Comparison of nano-indentation hardness and micro hardness. Surf. Coat. Technol. 195(2–3), 264–271 (2005)

    Article  CAS  Google Scholar 

  30. Mclachlan, A.D.: Coiled-coil formation and sequence regulations in the helical regions of α-keratin. J. Mol. Biol. 124, 297–304 (1978)

    Article  CAS  PubMed  Google Scholar 

  31. Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry, 5th edn. W. H. Freeman, New York (2002)

    Google Scholar 

  32. Danilatos, G., Feughelman, M.: The microfibril-matrix relationships in the mechanical properties of keratin fibers. Part II. The mechanical properties of the matrix during the extension of an α-keratin fiber. Text. Res. J. 50, 568–574 (1980)

    Article  CAS  Google Scholar 

  33. Feughelman, M.: A two-phase structure for keratin fibers. Text. Res. J. 29, 223–228 (1959)

    Article  Google Scholar 

  34. Liu, X.X., Li, T.S., Liu, X.J., Lv, R.G., Cong, P.H.: An investigation on the friction of oriented polytetrafluoroethylene (PTFE). Wear 262, 1414–1418 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge with thanks the financial support from the Natural Science Foundation of China (90923017, 50625515, 50821063, and 50805124). In addition, the authors would like to thank Prof. Shuxin Qu for the discussion on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linmao Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, P., Qian, L., Zheng, J. et al. Effect of Water on the Mechanical and Frictional Behaviors of Human Fingernails. Tribol Lett 38, 367–375 (2010). https://doi.org/10.1007/s11249-010-9616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9616-2

Keywords

Navigation