Skip to main content
Log in

Effect of Melting and Microstructure on the Microscale Friction of Silver–Bismuth Alloys

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This article reports an investigation of the effect of melting and microstructure on the microscale friction of several silver–bismuth alloys using a high-temperature nanoindentation-tribotesting system. These studies showed that friction increases with temperature before melting. We modeled these results as due to the softening of the alloys with increasing temperature, which appears to adequately explain the experimental trend. The friction behavior upon melting depends on the alloy composition. For some alloy composition, friction was observed to exhibit a sharp decrease upon melting, while for another alloy composition, friction was observed to keep increasing with temperature. This unusual behavior can be explained by the difference in microstructure and phase composition as a function of temperature among different Ag–Bi alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kogoh, S., Sakai, T., Asami, K.: Temperature dependence of tensile-strength and hardness for Nodular cast-Iron and their mutual correlation. J. Mater. Sci. 27(16), 4323–4328 (1992)

    Article  CAS  ADS  Google Scholar 

  2. Xia, J., Dong, H.S., Bell, T.: Surface properties of a γ-based titanium aluminide at elevated temperatures. Intermetallics 10, 723–729 (2002)

    Article  CAS  Google Scholar 

  3. Michel, M.D., Mikowski, A., Lepienski, C.M., Foerster, C.E., Serbena, F.C.: High temperature microhardness of soda-lime glass. J. Non-Cryst. Solid 348, 131–138 (2004)

    Article  CAS  ADS  Google Scholar 

  4. Yonenaga, I.: Hardness, yield strength, and dislocation velocity in elemental and compound semiconductors. Mater. Trans. 46(9), 1979–1985 (2005)

    Article  CAS  Google Scholar 

  5. Chwa, S.O., Klein, D., Liao, H.L., Dembinski, L., Coddet, C.: Temperature dependence of microstructure and hardness of vacuum plasma sprayed Cu-Mo composite coatings. Surf. Coatings Technol. 200(20–21), 5682–5686 (2006)

    CAS  Google Scholar 

  6. Hutchison, M.M., Louat, N.: Temperature dependence of yield strength in iron. Acta Metallurgica 10, 255–256 (1962)

    Article  CAS  Google Scholar 

  7. Weidner, D.J., Wang, Y.B., Vaughan, M.T.: Yield strength at high-pressure and temperature. Geophys. Res. Lett. 21(9), 753–756 (1994)

    Article  ADS  Google Scholar 

  8. Peng, J.X., Jing, F.Q., Li, D.H., Wang, L.L.: Pressure and temperature dependence of shear modulus and yield strength for aluminum, copper, and tungsten under shock compression. J. Appl. Phys. 98(1), Art No. 013508 (2005)

    Google Scholar 

  9. Drobyshevski, E.M., Kolesnikova, E.N., Yuferev, V.S.: Calculating the liquid film effect on solid armature rail-gun launching. IEEE Trans. Magn. 35(1), 53–58 (1999)

    Article  ADS  Google Scholar 

  10. Crawford, R., Taylor, J., Keefer, D.: Solid ring armature experiments in a transaugmented railgun. IEEE Trans. Magn. 31(1), 138–143 (1995)

    Article  ADS  Google Scholar 

  11. Liu, S.B., Wang, Q.: A three-dimensional thermomechanical model of contact between non-conforming rough surfaces. J. Tribol. Trans. ASME 123(1), 17–26 (2001)

    Article  Google Scholar 

  12. Liu, G., Wang, Q., Liu, S.B.: A three-dimensional thermal-mechanical asperity contact model for two nominally flat surfaces in contact. J. Tribol. Trans. ASME 123(3), 595–602 (2001)

    Article  Google Scholar 

  13. Wu, J., Pecht, M.G.: Contact resistance and fretting corrosion of lead-free alloy coated electrical contacts. IEEE Trans. Compon. Packag. Technol. 29(2), 402–410 (2006)

    Article  CAS  Google Scholar 

  14. Wable, G.S., Chu, Q.Y., Damodaran, P., Srihari, K.: A systematic procedure for the selection of a lead-free solder paste in an electronics manufacturing environment. Solder. Surf. Mount Technol. 17(2), 32–39 (2005)

    Article  CAS  Google Scholar 

  15. Suraski, D., Seelig, K.: The current status of lead-free solder alloys. IEEE Trans. Electron. Packag. Manufact. 24(4), 244–248 (2001)

    Article  CAS  Google Scholar 

  16. Glavatskih, S.B.: Evaluating thermal performance of a PTFE-faced tilting pad thrust bearing. J. Tribol. Trans. ASME 125(2), 319–324 (2003)

    Article  CAS  Google Scholar 

  17. Lehmann, D., Hupfer, B., Lappan, U., Pompe, G., Haussler, L., Jehnichen, D., Janke, A., Geissler, U., Reinhardt, R., Lunkwitz, K., Franke, R., Kunze, K.: New PTFE-polyamide compounds. Des. Monomers Polym. 5(2–3), 317–324 (2002)

    Article  CAS  Google Scholar 

  18. Samyn, P., De, B.P., Schouken, G., Van, P.A.: Large-scale tests on friction and wear of engineering polymers for material selection in highly loaded sliding systems. Mater. Des. 27(7), 535–555 (2006)

    CAS  Google Scholar 

  19. Kawachi, T., Takayanagi, S., Asakura, H., Ishikawa, H.: Development of lead free overlay for three layer bearings of highly loaded engines. SAE Technical Papers, Document number: 2005-01-1863

  20. Smith, J.F., Zhang, S.: High temperature nanoscale mechanical property measurements. Surf. Eng. 16(2), 143–146 (2000)

    Article  CAS  Google Scholar 

  21. Beake, B.D., Smith, J.F.: High-temperature nanoindentation testing of fused silica and other materials. Philos. Mag. A 82(10), 2179–2186 (2002)

    CAS  ADS  Google Scholar 

  22. Okamoto, H.: Desk Handbook: Phase Diagram for Binary Alloys. ASM International, Materials Park (2000)

    Google Scholar 

  23. Greenwood, N.N., Earnshaw, A.: Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Oxford (1997)

    Google Scholar 

  24. Hall, E.O.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Lond. B 64, 747–753 (1951)

    Article  ADS  Google Scholar 

  25. Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953)

    CAS  Google Scholar 

  26. Goddard, J., Wailman, H.: A theory of friction and wear during the abrasion of metals. Wear 5, 114–135 (1962)

    Article  Google Scholar 

  27. Zou, M., Cai, L., Wang, H., Yang, D., Wyrobek, T.: Adhesion and friction studies of a selectively micro/nano-textured surface produced by UV assisted crystallization of amorphous silicon. Tribol. Lett. 20(1), 43–52 (2005)

    Article  CAS  Google Scholar 

  28. Zou, M., Cai, L., Yang, D.: Nanotribology of a silica nanoparticle-textured surface. Tribol. Trans. 49(1), 66–71 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere gratitude for the financial support from US Office of Naval Research (MURI N00014-04-0599), and US Department of Energy (DE-FC26-04NT42263), as well as the gift support by the Taiho Kogyo Company to B. He and Q. Wang. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the sponsors. The authors would also like to thank Dr. Jim Smith from Micro Materials Ltd. for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, B., Ghosh, G., Chung, YW. et al. Effect of Melting and Microstructure on the Microscale Friction of Silver–Bismuth Alloys. Tribol Lett 38, 275–282 (2010). https://doi.org/10.1007/s11249-010-9606-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9606-4

Keywords

Navigation