Skip to main content

Advertisement

Log in

Energy, Adhesion, and the Elastic Foundation

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A theory for elastic contact adhesion between a rigid sphere and an elastic foundation is developed. The theory derives relationships between the contact deformation and the externally applied force. The derivation is based on elastic contact between a sphere and a thin linear-elastic foundation in which the strain energies are balanced by the work of indentation and the change in surface energy. Contacting regimes where there is either compressive strain energy or only tensile strain energy (pull-off regime) are both treated. The model is non-dimensionalized and an order of magnitude analysis is performed in order to develop simplified closed form solutions; the simplified model is then evaluated and compared to the full solution. This theory finds that the adhesion force is significantly larger for an elastic foundation in which the surface elements act independently as compared to more traditional solutions for elastic solids. The theory gives an adhesion force of \( F_{\text{adh}} \cong 7\pi R\Updelta \gamma . \)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a :

Half-width of the compressive contact zone

dA :

Differential area within the contact surface dA = s ds dθ

b :

Contact half-width

b adh :

Half-width of the contact zone at maximum negative force

b 0 :

Half-width of the contact zone at zero externally applied load

b trans :

Contact half-width at the transition condition for the pull-off regime

C :

Stiffness of the foundation (pressure/unit displacement)

d :

Deformation in the foundation at s = 0

d max :

Gedanken maximum deformation at s = 0

d trans :

Transition condition for the pull-off regime, d trans = 0

δ s :

Deformation in the foundation as a function of the contact radial coordinate s

Δγ :

Change in surface energy per unit area as a result of contact Δγ = γ 1 + γ 2 − γ 12

E :

Modulus of elasticity

ν :

Poisson’s ratio

F :

Externally applied force: (+) compressive; (−) tensile

F adh :

The maximum tensile force or the force of adhesion

Φ:

The Zenith angle, Φ = 0 along the axis of loading

h :

Maximum height of the tensile region at the edge of contact

h s :

Maximum height of the tensile zone at separation

h trans :

Height of the tensile zone at the transition condition for the pull-off regime

H :

dimensionless group representing the strength of adhesion

P :

Contact pressure: (+) compressive; (−) tensile

θ :

Angle around the contact θ = 0…2π

R :

Radius of the contacting sphere

s :

Radial coordinate from the center of the contact

t :

Thickness of the elastic foundation

U 0 :

Compressive strain energy

U T :

Total strain energy

U s :

Change in surface energy due to a finite contact area

U max :

Gedanken maximum strain energy

z :

Surface coordinate in the direction of loading: (+) into the film

():

Denotes a dimensionless/normalized variable

\( a = \sqrt {2Rd - d^{2} } \) :

Half width of the compressive zone in terms of the penetration d and the spherical radius R

\( b = \sqrt {2R\left( {d + h} \right) - \left( {d + h} \right)^{2} } \) :

Half width of the contact with adhesion in terms of the penetration d, the height of the tensile zone h, and the radius R

\( {\frac{{\pi b^{4} }}{4R}} \) :

Simplified solution for the volume of a spherical cap of half width b and a radius R based on small angle approximations

\( 2\pi R\left( {R - \sqrt {R^{2} - b^{2} } } \right) \) :

Surface area of a spherical cap of half width b and a radius R

\( C = {\frac{{\left( {1 - \nu } \right)E}}{{\left( {1 + \nu } \right)\left( {1 - 2\nu } \right)t}}} \) :

Foundation stiffness for a Winkler foundation under conditions of plane strain

\( \sqrt {1 - \bar{b}^{2} } = \cos (\bar{b}) \cong 1 - {\frac{{\bar{b}^{2} }}{2}} \) :

Small angle approximations for the dimensionless contact half width that are used to develop the simplified solution

References

  1. Kendall, K.: Adhesion and surface energy of elastic solids. J. Phys. D.: Appl. Phys. 4, 1186 (1971)

    Article  ADS  Google Scholar 

  2. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and contact of elastic solids. Proc. R. Soc. Lond. Ser. A 324, 301 (1971)

    Article  CAS  ADS  Google Scholar 

  3. Greenwood, J.A.: On the dmt theory. Tribol. Lett. 26, 203–211 (2007)

    Article  Google Scholar 

  4. Greenwood, J.A.: Adhesion of elastic spheres. Proc. R. Soc. Lond. Ser. A 453, 1277–1297 (1997)

    Article  CAS  MathSciNet  ADS  Google Scholar 

  5. Johnson, K.L., Greenwood, J.A.: An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 192, 326–333 (1997)

    Article  CAS  PubMed  Google Scholar 

  6. Derjaguin, B., Muller, V., Toporov, Y.: Different approaches to the contact mechanics. J. Colloid Interface Sci. 73, 293 (1980)

    Article  Google Scholar 

  7. Derjaguin, B., Muller, V., Toporov, Y.: On different approaches to the contact mechanics. Prog. Surf. Sci. 45, 156 (1994)

    Article  Google Scholar 

  8. Maugis, D.: Adhesion of spheres—the jkr-dmt transition using a dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)

    Article  CAS  Google Scholar 

  9. Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2–13 (1977)

    Article  CAS  Google Scholar 

  10. Reedy, E.D.: Contact mechanics for coated spheres that includes the transition from weak to strong adhesion. J. Mater. Res. 22, 2617–2622 (2007)

    Article  CAS  ADS  Google Scholar 

  11. Reedy, E.D.: Thin-coating contact mechanics with adhesion. J. Mater. Res. 21, 2660–2668 (2006)

    Article  CAS  ADS  Google Scholar 

  12. Delrio, F.W., De Boer, M.P., Knapp, J.A., Reedy, E.D., Clews, P.J., Dunn, M.L.: The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 4, 629–634 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Johnson, K.L., Sridhar, I.: Adhesion between a spherical indenter and an elastic solid with a compliant elastic coating. J. Phys. D.: Appl. Phys. 34, 683–689 (2001)

    Article  CAS  ADS  Google Scholar 

  14. McGuiggan, P.M., Wallace, J.S., Smith, D.T., Sridhar, I., Zheng, Z.W., Johnson, K.L.: Contact mechanics of layered elastic materials: experiment and theory. J. Phys. D.: Appl. Phys. 40, 5984–5994 (2007)

    Article  CAS  ADS  Google Scholar 

  15. Sridhar, I., Zheng, Z.W., Johnson, K.L.: A detailed analysis of adhesion mechanics between a compliant elastic coating and a spherical probe. J. Phys. D.: Appl. Phys. 37, 2886–2895 (2004)

    Article  CAS  ADS  Google Scholar 

  16. Sawyer, W.G., Wahl, K.J.: Accessing inaccessible interfaces: in situ approaches to materials tribology. MRS Bull. 33, 1145–1148 (2008)

    Google Scholar 

  17. Wahl, K.J., Sawyer, W.G.: Observing interfacial sliding processes in solid-solid contacts. MRS Bull. 33, 1159–1167 (2008)

    CAS  Google Scholar 

  18. Brukman, M.J., Marco, G.O., Dunbar, T.D., Boardman, L.D., Carpick, R.W.: Nanotribological properties of alkanephosphonic acid self-assembled monolayers on aluminum oxide: effects of fluorination and substrate crystallinity. Langmuir 22, 3988–3998 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. Chandross, M., Lorenz, C.A., Grest, G.S., Stevens, M.J., Webb, E.B.: Nanotribology of anti-friction coatings in MEMS. JOM 57, 55–61 (2005)

    Article  CAS  Google Scholar 

  20. Yang, X.J., Perry, S.S.: Friction and molecular order of alkanethiol self-assembled monolayers on au(111) at elevated temperatures measured by atomic force microscopy. Langmuir 19, 6135–6139 (2003)

    Article  CAS  Google Scholar 

  21. Burris, D.L., Boesl, B., Bourne, G.R., Sawyer, W.G.: Polymeric nanocomposites for tribological applications. Macromol. Mater. Eng. 292, 387–402 (2007)

    Article  CAS  Google Scholar 

  22. Sinnott, S.B., Jang, I., Phillpot, S.R., Dickrell, P.L., Burris, D.L., Sawyer, W.G.: Mechanisms responsible for the tribological properties of PTFE transfer films. Abstr. Pap. Am. Chem. Soc. 231, (2006)

  23. Komvopoulos, K., Pernama, S.A., Ma, J., Yamaguchi, E.S., Ryason, P.R.: Synergistic effects of boron-, sulfur-, and phosphorus-containing lubricants in boundary lubrication of steel surfaces. Tribol. Trans. 48, 218–229 (2005)

    Article  CAS  Google Scholar 

  24. Graham, E.E., Klaus, E.E.: Lubrication from the vapor-phase at high-temperatures. ASLE Trans. 29, 229–234 (1986)

    CAS  Google Scholar 

  25. Blanchet, T.A., Lauer, J.L., Liew, Y.F., Rhee, S.J., Sawyer, W.G.: Solid lubrication by decomposition of carbon-monoxide and other gases. Surf. Coat. Technol. 68, 446–452 (1994)

    Article  Google Scholar 

  26. Winkler, E.: Theory of elasticity and strength. Dominicus Prague (1867)

  27. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge, UK (1985)

    Google Scholar 

  28. Rennie, A.C., Dickrell, P.L., Sawyer, W.G.: Friction coefficient of soft contact lenses: measurements and modeling. Tribol. Lett. 18, 499–504 (2005)

    Article  CAS  Google Scholar 

  29. Dunn, A.C., Cobb, J.A., Kantzios, A.N., Lee, S.J., Sarntinoranont, M., Tran-Son-Tay, R., Sawyer, W.G.: Friction coefficient measurement of hydrogel materials on living epithelial cells. Tribol. Lett. 30, 13–19 (2008)

    Article  Google Scholar 

  30. Johnson, K.L.: Mechanics of adhesion. Tribol. Int. 31, 413–418 (1998)

    Article  Google Scholar 

  31. Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., Full, R.J.: Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Autumn, K., Sitti, M., Liang, Y.C.A., Peattie, A.M., Hansen, W.R., Sponberg, S., Kenny, T.W., Fearing, R., Israelachvili, J.N., Full, R.J.: Evidence for van der Waals adhesion in gecko setae. Proc. Natl Acad. Sci. USA 99, 12252–12256 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Gregory Sawyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, I.J., Sawyer, W.G. Energy, Adhesion, and the Elastic Foundation. Tribol Lett 37, 453–461 (2010). https://doi.org/10.1007/s11249-009-9537-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9537-0

Keywords

Navigation