Skip to main content
Log in

Influence of Ultrasonic In-Plane Oscillations on Static and Sliding Friction and Intrinsic Length Scale of Dry Friction Processes

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The force of friction between plates of different materials (steel, brass, copper, titanium, glass, aluminum, rubber, and Teflon, among others) and a steel sample oscillating in the sliding plane at a frequency of 40–70 kHz has been studied. The measured friction coefficient as a function of sliding velocity and velocity oscillation amplitude fits well with theoretical predictions based on the simple Coulomb friction law at sliding velocities larger than the actuation velocity. However, the friction coefficient tends to a finite value at small sliding velocities, which is contrary to the theoretical prediction. The static limit has been studied in detail. A strong decrease in the static friction force takes place at oscillation amplitudes of 20–60 nm. Such amplitudes are enough to control the friction coefficient. The experimental data for both static and sliding friction are interpreted within the framework of a microscopic model and a phenomenological macroscopic model. The notion of intrinsic friction slip length is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Socoliuc, A., Gnecco, E., Maier, S.: Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207–211 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Popov, V.L., Dudko, O.K.: Tribospectroscopy of fractal surfaces. Phys. Mesomech. 6, 95–101 (2003)

    Google Scholar 

  3. Pohlman, R., Lehfeldt, E.: Influence of ultrasonic vibration on metallic friction. Ultrasonics 4, 178–185 (1966)

    Article  CAS  Google Scholar 

  4. Godfrey, D.: Vibration reduces metal to metal contact and causes an apparent reduction in friction. ASLE Trans. 10, 183–192 (1967)

    Google Scholar 

  5. Weishaupt, W.: Reibungsverminderung durch mechanische Schwingungen. Technisches Messen. 11, 345–348 (1976)

    Google Scholar 

  6. Weishaupt, W.: Piezokeramische Poeitioniereinrichtung für den Mikrobereich mit gesteuerter Reibungskraftverminderung. Dissertation, TU Berlin (1972)

  7. Siegert, K., Ulmer, J.: Superimposing ultrasonic waves on the dies in tube and wire drawing. J. Eng. Mater. Technol. Trans. ASME 123, 517–523 (2001)

    Article  Google Scholar 

  8. Siegert, K., Ulmer, J.: Ultraschallüberlagerung des Draht- und Rohrziehens zur Reduzierung der Reibung und Verbesserung der Oberfläche. Materialwissenschaft und Werkstofftechnik 31, 797–800 (2000)

    Article  CAS  Google Scholar 

  9. Littmann, W., Storck, H., Wallaschek, J.: Sliding friction in the presence of ultrasonic oscillations: superposition of longitudinal oscillations. Arch. Appl. Mech. 71, 549–554 (2001)

    Article  Google Scholar 

  10. Littmann, W., Storck, H., Wallaschek, J.: Reibung bei Ultraschallschwingungen:Reibung und Schwingungnen in Fahrzeugen, Maschinen und Anlagen, Band 1736 der Reihe, pp. 231–237. VDI-Berichte, VDI Verlag (2002)

  11. Storck, H., Littmann, W., Wallaschek, J., Mracek, M.: The effect of friction reduction in presence of ultrasonic vibrations and its relevance to travelling wave ultrasonic motors. Ultrasonics 40, 379–383 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Kumar, V.C., Hutchings, I.M.: Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration. Tribol. Int. 37, 833–840 (2004)

    Article  CAS  Google Scholar 

  13. Popov, V.L., Starcevic, J., Filippov, A.E.: Reconstruction of potential from dynamic experiments. Phys. Rev. E 75, 066104 (6 pp) (2007)

    Google Scholar 

  14. Dudko, O.K., Popov, V.L., Putzar, G.: Tribospectroscopy of randomly rough surfaces. Tribol. Int. 39, 456 (2006)

    Article  Google Scholar 

  15. Popov, V.L., Starchevich, Y.: Tribospectroscopic study of a steel-steel friction couple. Techn. Phys. Lett. 31, 309–311 (2005)

    Article  CAS  Google Scholar 

  16. Starčević, J.: Tribospektroskopie als neue Methode zur Untersuchung von Reibungsmechanismen. Theoretische Grundlagen und Experiment. Dissertation, Techn. Univ., Berlin, 110 pp (2008)

  17. Popov, V.L.: Kontaktmechanik und Reibung. Ein Lehr- und Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation. Springer, Berlin (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin L. Popov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, V.L., Starcevic, J. & Filippov, A.E. Influence of Ultrasonic In-Plane Oscillations on Static and Sliding Friction and Intrinsic Length Scale of Dry Friction Processes. Tribol Lett 39, 25–30 (2010). https://doi.org/10.1007/s11249-009-9531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9531-6

Keywords

Navigation