Skip to main content
Log in

Microtribology and Friction-Induced Material Transfer in Layered MoS2 Nanoparticles Sprayed on a Steel Surface

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Frictional performance of molybdenum disulfide (MoS2) particles sprayed on a substrate is investigated in a ball-on-disc tribometer. The ability of large (~2 μm) and small (~50 nm) particles to generate low-friction transfer film is investigated with a view to elucidate the requirement for film formation. Particle migration, particle stability in the contact region, oxidation potential, and particle adhesion to the substrate are explored within a span of operating parametersp; normal load, and sliding velocity. It is found that the larger particles are able to migrate to the contact to raise a homogeneous but nonuniform low-friction transfer film that flows plastically to yield large contact areas, which aid in wear protection. Within the present load and speed range, the inability of small particles to stay in the contact region and undergo basal slip militates against the formation of a low-friction transfer film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids, Part II. Oxford University Press, London (1964)

    Google Scholar 

  2. Bhushan, B., Gupta, B.K.: Handbook of Tribology. McGraw-Hill, New York (1991)

    Google Scholar 

  3. Black, A.L., Dunster, R.W., Sanders, J.V.: Comparative study of surface deposits and behavior of MoS2 particles and molybdenum dialkyl-dithio-phosphate. Wear 13, 119–132 (1969)

    Article  CAS  Google Scholar 

  4. Gansheimerand, J., Holinsky, R.: A study of solid lubricants in oils and greases under boundary conditions. Wear 19, 439–449 (1972)

    Article  Google Scholar 

  5. Bell, M.E., Findlay, J.H.: Molydenite as a new lubricant. Phys. Rev. 59, 922–927 (1941)

    CAS  Google Scholar 

  6. Braithwaite, E.R., Rowe, G.W.: Principles and applications of lubrication with solids. Sci. Lubr. 15, 92–96 (1957)

    Google Scholar 

  7. Winer, W.O.: Molybdenum disulphide as a lubricant: a review of the fundamental knowledge. Wear 10, 422–452 (1967)

    Article  CAS  Google Scholar 

  8. Spalvins, T.: Morphological and frictional behavior of sputtered MoS2 films. Thin Solid Films 96, 17–24 (1982)

    Article  CAS  ADS  Google Scholar 

  9. Holinski, R., Gansheimer, J.: A study of the lubricating mechanism of molybdenum disulphide. Wear 19, 329–342 (1972)

    Article  CAS  Google Scholar 

  10. Buck, V.: Morphological properties of sputtered MoS2 films. Wear 91, 281–288 (1983)

    Article  CAS  Google Scholar 

  11. Fleischauer, P.D., Tolentino, L.U.: Effects of crystallite orientation on the environmental stability and lubrication properties of sputtered MoS2 thin films. ASLE Trans. 27, 82–88 (1984)

    CAS  Google Scholar 

  12. Roberts, E.W.: Thin solid lubricants in space. Tribol. Int. 23, 95–105 (1990)

    Article  CAS  Google Scholar 

  13. Miyoshi, K., Honecy, F.S., Abel, P.B., Pepper, S.V., Spalvins, T., Wheeler, D.R.: A vacuum (10–9 Torr) friction apparatus for determining friction and endurance like that of MoSx films. Tribol. Trans. 36, 351–358 (1993)

    Article  CAS  Google Scholar 

  14. Suzuki, M.: Comparison of tribological characteristics of sputtered MoS2 films coated with different apparatus. Wear 218, 110–118 (1998)

    Article  CAS  Google Scholar 

  15. Wang, D.Y., Chang, C.L., Chen, Z.Y., Ho, W.Y.: Microstructural characterization of MoS2-Ti composite solid lubricating films. Surf. Coat. Technol. 121, 629–635 (1997)

    Article  Google Scholar 

  16. Killeffer, D.H., Linz, D.: Molybdenum Compounds: Their Chemistry and Technology. Interscience, New York (1952)

    Google Scholar 

  17. Bowden, F.P., Tabor, D.: Friction: An Introduction to Tribology, vol. 91. Anchor, Garden City, NY (1973)

    Google Scholar 

  18. Singer, I.L.: Solid lubrication processes. In: Singer, I.L., Pollock, H.M. (eds.) Fundamentals of Friction: Macroscopic and Microscopic Processes. Kluwer, Dordrecht (1992)

    Google Scholar 

  19. Dickinson, R.G., Pauling, L.: The crystal structure of molybdenite. J. Am. Chem. Soc. 45, 1466–1471 (1923)

    Article  CAS  Google Scholar 

  20. Bragg, W.: The investigation of the properties of thin films by means of x-rays. Nature 115, 266–269 (1925)

    Article  ADS  Google Scholar 

  21. Waghray, H., Lee, T.-S., Tatarchuk, B.J.: A study of the tribological and electrical properties of sputtered and burnished transition metal dichalcogenide films. Surf. Coat. Technol. 77, 415–420 (1995)

    Google Scholar 

  22. Schumacher, A., Kruse, N., Prins, R., Meyer, E., Lüthi, R., Howald, L., Güntherodt, H.-J., Scandella, L.: Influence of humidity on friction measurements of supported MoS2 single layers. J. Vac. Sci. Technol. B 14, 1264–1267 (1996)

    Article  CAS  Google Scholar 

  23. Prasad, S.V., Zabinski, J.S.: Tribology of tungsten disulphide (WS2): characterization of wear-induced transfer films. J. Mater. Sci. Lett. 12, 1413–1415 (1993)

    Article  CAS  ADS  Google Scholar 

  24. Singer, I.L.: Mechanics and chemistry of solids in sliding contact. Langmuir 12, 4486–4491 (1996)

    Article  CAS  Google Scholar 

  25. Fayeulle, S., Ehni, P.D., Singer, I.L.: Analysis of transfer films formed on steel and co-WC during sliding against MoS2-coated steel in argon. Surf. Coat. Technol 41, 93–101 (1990)

    Article  CAS  Google Scholar 

  26. Wahl, K.J., Singer, I.L.: Quantification of a lubricant transfer process that enhances the sliding life of a MoS2 coating. Tribol. Lett. 1, 59–66 (1995)

    Article  CAS  Google Scholar 

  27. Wahl, K.J., Belin, M., Singer, I.L.: A triboscopic investigation of the wear and friction of MoS2 in a reciprocating sliding contact. Wear 214, 212–220 (1998)

    Article  CAS  Google Scholar 

  28. Rapoport, L., Bilik, Yu., Feldman, Y., Homyonfer, M., Cohen, S.R., Tenne, R.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791–793 (1997)

    Article  CAS  ADS  Google Scholar 

  29. Rapoport, L., Feldman, Y., Homyonfer, M., Cohen, S.R., Solan, J., Hutchison, J.L., Tenne, R.: Inorganic fullerene-like material as additives to lubricants: structure–function relationship. Wear 225–229, 975–982 (1999)

    Article  Google Scholar 

  30. Tenne, R., Margulis, L., Genut, M., Hodes, G.: Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444–446 (1992)

    Article  CAS  ADS  Google Scholar 

  31. Feldman, Y., Wasserman, E., Srolovitz, D.J., Tenne, R.: High-rate gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995)

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Rapoport, L., Leshchinsky, V., Lvovsky, M., Nepomnyashchy, O., Volovik, Y., Tenne, R.: Mechanism of friction of fullerenes. Ind. Lubr. Tribol. 54, 171–176 (2002)

    Article  Google Scholar 

  33. Joly-Pottuz, L., Martin, J.M., Dassenoy, F., Belin, M., Montagnac, G., Reynard, B., Fleischer, N.: Pressure-induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact. J. Appl. Phys. 99, 023524 (2006)

    Article  ADS  Google Scholar 

  34. Devaprakasam, D., Khatri, O.P., Shankar, N., Biswas, S.K.: Boundary lubrication additives for aluminium: a journey from nano to macrotribology. Tribol. Int. 38, 1022–1034 (2005)

    Article  CAS  Google Scholar 

  35. Green, C.P., Lioe, H., Cleveland, J.P., Proksch, P., Mulvaney, P., Sader, J.E.: Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75, 1988–1996 (2004)

    Article  CAS  ADS  Google Scholar 

  36. Cleveland, J.P., Manne, S., Bocek, D., Hansma, P.K.: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum. 64, 403–404 (1993)

    Article  CAS  ADS  Google Scholar 

  37. Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996)

    Article  CAS  ADS  Google Scholar 

  38. Gubarevich, A.V., Usuba, S., Kakudate, Y., Tanaka, A., Odawara, O.: Frictional properties of diamond and fullerene nanoparticles sprayed by a high-velocity argon gas on stainless steel substrate. Diam. Relat. Mater. 14, 1549–1555 (2005)

    Article  Google Scholar 

  39. Moshkovith, A., Perfiliev, V., Cyclesker, I., Fleischer, N., Tenne, R., Rapoport, L.: Friction of fullerene-like WS2 nanoparticles: effect of agglomeration. Tribol. Lett. 24, 225–228 (2006)

    Article  CAS  Google Scholar 

  40. Farr, J.P.G.: Molybdenum disulphide in lubrication: a review. Wear 35, 1–22 (1975)

    Article  CAS  Google Scholar 

  41. Sahoo, R.R., Math, S., Biswas, S.K.: Mechanics of deformation under traction and friction of a micrometric monolithic MoS2 particle in comparison with those of an agglomerate of nanometric MoS2 particle. Tribol. Lett. (2009). doi:10.1007/s11249-009-9504-9

  42. Martin, J.M., Donnet, C., Le Mogne, Th., Epicier, Th.: Superlubricity of molybdenum disulphide. Phys. Rev. B 48, 10583–10588 (1993)

    Article  CAS  ADS  Google Scholar 

  43. Wieting, T.J., Verble, J.L.: Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2. Phys. Rev. B 3, 4286–4292 (1971)

    Article  ADS  Google Scholar 

  44. Chen, J.M., Wang, C.S.: Second order Raman spectrum of MoS2. Solid State Comm. 14, 857–860 (1974)

    Article  CAS  ADS  Google Scholar 

  45. Wong, K.C., Lub, X., Cotter, J., Eadie, D.T., Wong, P.C., Mitchell, K.A.R.: Surface and friction characterization of MoS2 and WS2 third body thin films under simulated wheel/rail rolling–sliding contact. Wear 264, 526–534 (2008)

    Article  CAS  Google Scholar 

  46. Allam, I.M.: Solid lubricants for applications at elevated temperatures. J. Mater. Sci. 26, 3977–3984 (1991)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Hindustan Petroleum Corporation Limited (HPCL), Mumbai, India for their support in carrying out this work. Our sincere thanks to Mrs. Bindu CN, for the help in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Biswas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, R.R., Biswas, S.K. Microtribology and Friction-Induced Material Transfer in Layered MoS2 Nanoparticles Sprayed on a Steel Surface. Tribol Lett 37, 313–326 (2010). https://doi.org/10.1007/s11249-009-9525-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9525-4

Keywords

Navigation