Skip to main content
Log in

Analysis of Feature-Scale Wear in Chemical Mechanical Polishing: Modeling and Experiments

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

An asperity-scale wear model was developed to predict feature-scale wear in chemical–mechanical polishing (CMP), and was compared to the measured evolution of a lithographically patterned feature during full-scale CMP tests. To conduct this study, a lithographic technique was used to pattern a set of raised square features into a Cu-coated silicon wafer. Two-dimensional contact profilometry was used to measure the topography of an isolated feature on each wafer both before polishing and at various intervals throughout the polishing process. In the wear modeling formulation, a pad deflection-based contact mechanics model was developed and combined with a particle-based wear model to predict the wear evolution of the sample during CMP. The predicted wear of the sample feature was found to agree well to experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Terrell, E.J., Higgs, C.F.: Hydrodynamics of slurry flow in chemical mechanical polishing—a review. J. Electrochem. Soc. 153(6), K15–K22 (2006)

    Article  CAS  Google Scholar 

  2. Haosheng, C., Jiang, L., Darong, C., Jiadao, W.: Nano particles’ behavior in non-Newtonian slurry in mechanical process of CMP. Tribol. Lett. 24(3), 179–186 (2006)

    Article  Google Scholar 

  3. Terrell, E.J., Higgs, C.F.: A modeling approach for predicting the abrasive particle motion during chemical mechanical polishing. J. Tribol. 129(4), 933–941 (2007)

    Article  CAS  Google Scholar 

  4. Terrell, E.J., Higgs, C.F.: A particle-augmented mixed lubrication modeling approach to predicting chemical mechanical polishing. J. Tribol. 131(1), 012201 (10 pp) (2009)

    Google Scholar 

  5. Nanz, G., Camilletti, L.E.: Modeling of chemical–mechanical polishing—a review. IEEE Trans. Semicond. Manuf. 8(4), 382–389 (1995)

    Article  Google Scholar 

  6. Zantye, P.B., Kumar, A., Sikder, A.K.: Chemical mechanical planarization for microelectronics applications. Mater. Sci. Eng. R 45(3–6), 132 (2004)

    Google Scholar 

  7. Zabasajja, J., Merchant, T., Ng, B., Banerjee, S., Green, D., Lawing, S., Kura, H.: Modeling and characterization of tungsten chemical and mechanical polishing processes. J. Electrochem. Soc. 148(2), G73–G77 (2001)

    Article  CAS  Google Scholar 

  8. Paul, E., Kaufman, F., Brusic, V., Zhang, J., Sun, F., Vacassy, R.: A model of copper CMP. J. Electrochem. Soc. 152(4), G322–G328 (2005)

    Article  CAS  Google Scholar 

  9. Jeng, Y.R., Huang, P.Y.: A material removal rate model considering interfacial micro-contact wear behavior for chemical mechanical polishing. J. Tribol. 127(1), 190–197 (2005)

    Article  Google Scholar 

  10. Jeng, Y.R., Huang, P.Y.: Impact of abrasive particles on the material removal rate in CMP—a microcontact perspective. Electrochem. Solid State Lett. 7(2), G40–G43 (2004)

    Article  CAS  Google Scholar 

  11. Luo, J.F., Dornfeld, D.A.: Material removal mechanism in chemical mechanical polishing: theory and modeling. IEEE Trans. Semicond. Manuf. 14(2), 112–133 (2001)

    Article  Google Scholar 

  12. Castillo-Mejia, D., Beaudoin, S.: A locally relevant wafer-scale model for CMP of silicon dioxide. J. Electrochem. Soc. 150(9), G581–G586 (2003)

    Article  CAS  Google Scholar 

  13. Mazaheri, A.R., Ahmadi, G.: Modeling the effect of bumpy abrasive particles on chemical mechanical polishing. J. Electrochem. Soc. 149(7), G370–G375 (2002)

    Article  CAS  Google Scholar 

  14. Che, W., Guo, Y.J., Chandra, A., Bastawros, A.: A scratch intersection model of material removal during chemical mechanical planarization (CMP). J. Manuf. Sci. Eng. 127(3), 545–554 (2005)

    Article  Google Scholar 

  15. Zhao, Y.W., Chang, L.: A micro-contact and wear model for chemical–mechanical polishing of silicon wafers. Wear 252(3–4), 220–226 (2002)

    Article  CAS  Google Scholar 

  16. Zeng, T.F., Sun, T.: Size effect of nanoparticles in chemical mechanical polishing—a transient model. IEEE Trans. Semicond. Manuf. 18(4), 655–663 (2005)

    Article  Google Scholar 

  17. Fu, G.H., Chandra, A., Guha, S., Subhash, G.: A plasticity-based model of material removal in chemical–mechanical polishing (CMP). IEEE Trans. Semicond. Manuf. 14(4), 406–417 (2001)

    Article  Google Scholar 

  18. Shi, F.G., Zhao, B.: Modeling of chemical–mechanical polishing with soft pads. Appl. Phys. A 67(2), 249–252 (1998)

    Article  CAS  ADS  Google Scholar 

  19. Gutmann, R.J., Steigerwald, J.M., You, L., Price, D.T., Neirynck, J., Duquette, D.J., Murarka, S.P.: Chemical–mechanical polishing of copper with oxide and polymer interlevel dielectrics. Thin Solid Films 270(1–2), 596–600 (1995)

    Article  CAS  ADS  Google Scholar 

  20. Tang, B.D., Xie, X.L., Boning, D.S.: Damascene chemical–mechanical polishing characterization and modeling for polysilicon microelectromechanical systems structures. J. Electrochem. Soc. 152(7), G582–G587 (2005)

    Article  CAS  Google Scholar 

  21. Chekina, O.G., Keer, L.M., Liang, H.: Wear-contact problems and modeling of chemical mechanical polishing. J. Electrochem. Soc. 145(6), 2100–2106 (1998)

    Article  CAS  Google Scholar 

  22. Chang, R.Z., Cao, Y., Spanos, C.J.: Modeling the electrical effects of metal dishing due to CMP for on-chip interconnect optimization. IEEE Trans. Electron Devices 51(10), 1577–1583 (2004)

    Article  ADS  Google Scholar 

  23. Saxena, R., Thakurta, D.G., Gutmann, R.J., Gill, W.N.: A feature scale model for chemical mechanical planarization of damascene structures. Thin Solid Films 449(1–2), 192 (2004)

    Article  CAS  ADS  Google Scholar 

  24. Nguyen, P.H., Bar, E., Lorenz, J., Ryssel, H.: Modeling of chemical–mechanical polishing on patterned wafers as part of integrated topography process simulation. Microelectron. Eng. 76(1–4), 89–94 (2004)

    Article  CAS  Google Scholar 

  25. Sawyer, W.G.: Surface shape and contact pressure evolution in two component surfaces: application to copper chemical mechanical polishing. Tribol. Lett. 17(2), 139–145 (2004)

    Article  CAS  Google Scholar 

  26. Yao, C.H., Feke, D.L., Robinson, K.M., Meikle, S.: Modeling of chemical mechanical polishing processes using a discretized geometry approach. J. Electrochem. Soc. 147(4), 1502–1512 (2000)

    Article  CAS  Google Scholar 

  27. Yao, C.-H., Feke, D.L., Robinson, K.M., Meikle, S.: Influence of feature-scale surface geometry on CMP processes. J. Electrochem. Soc. 147(8), 3094 (2000)

    Article  CAS  Google Scholar 

  28. Castillo-Mejia, D., Beaudoin, S.: A locally relevant Prestonian model for wafer polishing. J. Electrochem. Soc. 150(2), G96–G102 (2003)

    Article  CAS  Google Scholar 

  29. Luo, Q., Ramarajan, S., Babu, S.V.: Modification of the Preston equation for the chemical–mechanical polishing of copper. Thin Solid Films 335(1–2), 160–167 (1998)

    Article  CAS  ADS  Google Scholar 

  30. Steigerwald, J.M., Zirpoli, R., Murarka, S.P., Price, D., Gutmann, R.J.: Pattern geometry-effects in the chemical–mechanical polishing of inlaid copper structures. J. Electrochem. Soc. 141(10), 2842–2848 (1994)

    Article  CAS  Google Scholar 

  31. Lai, J.Y., Saka, N., Chun, J.H.: Evolution of copper-oxide damascene structures in chemical mechanical polishing—II. Copper dishing and oxide erosion. J. Electrochem. Soc. 149(1), G41–G50 (2002)

    Article  CAS  Google Scholar 

  32. Chen, Z., Sun, F., Vacassy, R.: An empirical dielectric erosion formula in metal chemical mechanical planarization. J. Electrochem. Soc. 153(6), G582–G586 (2006)

    Article  CAS  Google Scholar 

  33. Kazimi, S.M.A.: Solid Mechanics. Tata McGraw-Hill, New Delhi (1981)

    Google Scholar 

  34. Mpagazehe, J., Thukalil, G., Higgs, C.F.: A study to estimate the number of active particles in CMP. In: Materials Research Society Proceedings, San Francisco, CA, 13–17 April 2009

  35. Tichy, J., Levert, J.A., Shan, L., Danyluk, S.: Contact mechanics and lubrication hydrodynamics of chemical mechanical polishing. J. Electrochem. Soc. 146(4), 1523–1528 (1999)

    Article  CAS  Google Scholar 

  36. Shan, L., Levert, J., Meade, L., Tichy, J., Danyluk, S.: Interfacial fluid mechanics and pressure prediction in chemical mechanical polishing. J. Tribol. 122(3), 539–543 (2000)

    Article  CAS  Google Scholar 

  37. Guo, L., Subramanian, R.S.: Mechanical removal in CMP of copper using alumina abrasives. J. Electrochem. Soc. 151(2), 104–108 (2004)

    Article  Google Scholar 

  38. Steigerwald, J.M., Murarka, S.P., Ho, J., Gutmann, R.J., Duquette, D.J.: Mechanisms of copper removal during chemical mechanical polishing. J. Vac. Sci. Technol. B 13(6), 2215–2218 (1995)

    Article  CAS  Google Scholar 

  39. Lin, J.F., Chen, S.-C., Ouyang, Y.L., Tsai, M.S.: Analysis of the tribological mechanisms arising in the chemical–mechanical polishing of copper-film wafers when using a pad with concentric grooves. J. Tribol. 128, 445–459 (2006)

    Article  CAS  Google Scholar 

  40. Figliola, R.S., Beasley, D.E.: Theory and Design for Mechanical Measurements. Wiley, Hoboken (2005)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Alfred P. Sloan Foundation, the Pittsburgh Infrastructure Technology Alliance, and the NSF CAREER Program for their support of this research. Additionally, the authors are grateful for the support of the PPG Industries, for supplying polishing pads, and Advanced MicroSensors, for supplying the wafers that were used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fred Higgs III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terrell, E.J., Comes, R.B. & Higgs, C.F. Analysis of Feature-Scale Wear in Chemical Mechanical Polishing: Modeling and Experiments. Tribol Lett 37, 327–336 (2010). https://doi.org/10.1007/s11249-009-9524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9524-5

Keywords

Navigation