Skip to main content
Log in

Wear–Corrosion Resistance of DLC/CoCrMo System for Medical Implants with Different Surface Finishing

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The field of medical implants in the human body is a growing area with diverse tribological aspects. This application field has its own specific characteristics, dominated by stringent quality requirements due to the human suffering and sometimes life-threatening consequences of a surface failing to fulfil its required function. Combined wear–corrosion tests could provide more complete information about the implant behaviour in the aggressive body environment than separate wear and corrosion testing. Combined wear–corrosion experiments were performed using a reciprocating ball-on-plate apparatus equipped with an electrochemical cell. Untreated CoCrMo alloy samples as well as diamond-like carbon (DLC) coated samples were used as plate. The DLC coatings were tested with three different surface finishes: as-deposited, polished with diamond and brushed. All DLC coated samples with and without mechanical finishing had lower corrosion activity under wear–corrosion conditions and also smaller wear tracks when compared with the CoCrMo alloy. The current density for the coated alloy was about two orders of magnitude lower on average (10−5 vs. 10−3 A cm−2) and had a final coefficient of friction of only 50% of the uncoated metal (0.15 vs. 0.3). The brushed DLC showed the lowest current density and its behaviour was better than polished DLC and DLC as-deposited up to a potential of +0.93 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jacobs, J.J., Skipor, A.K., Black, J., Urban, R.M., Galante, J.O.: Release and excretion of metal in patients who have a total hip replacement component made of titanium-base alloy. J. Bone Joint Surg. 73, 1475–1486 (1991)

    CAS  PubMed  Google Scholar 

  2. Jacobs, J.J., Skipor, A.K., Patterson, L.M., Hallab, N.J., Paprosky, W.G., Black, J., Galante, J.O.: Metal release in patients who have had a primary total hip arthroplasty. J. Bone Joint Surg. 80, 1447–1458 (1998)

    CAS  PubMed  Google Scholar 

  3. Jacobs, J.J., Silverton, C., Hallab, N.J., Skipor, A.K., Patterson, L., Black, J., Galante, J.O.: Metal release and excretion from cement-less titanium alloy total knee replacements. Clin. Orthop. Relat. Res. 358, 173–180 (1999)

    Article  PubMed  Google Scholar 

  4. Wise, D.L.: Biomaterials and bioengineering handbook. Dekker, New York (2000)

    Google Scholar 

  5. Sunderman Jr, F.W., Hopfer, S.M., Swift, T., Rezuke, W.N., Ziebka, L., Highman, P., Edwards, B., Folcik, M., Gossling, H.R.: Cobalt, chromium, and nickel concentrations in body fluids of patients with porous-coated knee or hip prostheses. J. Orthop. Res. 7, 307–315 (1989)

    Article  CAS  PubMed  Google Scholar 

  6. Liu, T.K., Liu, S.H., Shang, C.H., Yang, R.S.: Concentration of metal elements in the blood and urine in the patients with cement-less total knee arthroplasty. Tohoku J. Exp. Med. 185, 253–262 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. Okazakia, Y., Gotohb, E.: Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26, 11–21 (2005)

    Article  Google Scholar 

  8. Hanawa, T.: In vivo metallic biomaterials and surface modification. Mater. Sci. Eng. A 267, 260–266 (1999)

    Article  Google Scholar 

  9. Yan, Y., Neville, A., Dowson, D.: Understanding the role of corrosion in the degradation of metal-on-metal implants. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 220, 173–180 (2006)

    Article  CAS  Google Scholar 

  10. Hsua, R.W.W., Yang, C.-C., Huangc, C.A., Chenb, Y.-S.: Electrochemical corrosion studies on Co–Cr–Mo implant alloy in biological solutions. Mater. Chem. Phys. 93, 531–538 (2005)

    Article  Google Scholar 

  11. Contu, F., Elsene, B., Bohni, H.: Corrosion behaviour of CoCrMo implant alloy during fretting in bovine serum. Corros. Sci. 47, 1863–1875 (2005)

    Article  CAS  Google Scholar 

  12. Yan, Y., Neville, A., Dowson, D.: Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments. Wear 263, 1105–1111 (2007)

    Article  CAS  Google Scholar 

  13. Dearnley, P.A.: A brief review of test methodologies for surface-engineered biomedical implant alloys. Surf. Coat. Technol. 198, 483–490 (2005)

    Article  CAS  Google Scholar 

  14. Grant, D.M., Mccoll, I.R., Golozar, M.A., Wood, J.V., Braithwaite, N.St.J.: Plasma assisted CVD for biomedical applications. Diam. Relat. Mater. 1, 727–730 (1992)

    Article  CAS  Google Scholar 

  15. Mitura, E., Mitura, S., Niedzielski, P., Has, Z., Wolowiec, R., Jakubowski, A., Szmidt, J., Sokolowska, A., Louda, P., Marciniak, J., Koczy, B.: DLC coatings for biomedical applications. Diam. Relat. Mater. 3, 896–898 (1994)

    Article  CAS  Google Scholar 

  16. Marciniak, L., Koczy, B., Boba, S., Mitura, S.: Einfluss von Passivirungs- und Kohlenstoffschichten auf austenitischen CrNiMo-Stahlen auf die Beständigkeit gegen Lochfrass und Spannungsrisskorrosion. Werkstoffe und Korrosion 44, 379–383 (1993)

    Article  CAS  Google Scholar 

  17. Thomson, L.A., Law, F.C., Rushton, N., Franks, J.: Biocompatibility of diamond-like carbon coating. Biomaterials 12, 37–40 (1991)

    Article  CAS  PubMed  Google Scholar 

  18. Tiainen, V.M.: Amorphous carbon as a bio-mechanical coating—mechanical properties and biological applications. Diam. Relat. Mater. 10, 153–160 (2001)

    Article  CAS  Google Scholar 

  19. Liu, E., Kwek, H.W.: Electrochemical performance of diamond-like carbon thin films. Thin Solid Films 516, 5201–5205 (2008)

    Article  CAS  ADS  Google Scholar 

  20. Mitura, E., Niedzielska, A., Niedzielski, P., Klimek, L., Rylski, A., Mitura, S., Moll, J., Pietrzykowski, W.: The properties of carbon layers deposited onto titanium substrates. Diam. Relat. Mater. 5, 998–1001 (1996)

    Article  CAS  Google Scholar 

  21. Fewell, M.P., Mitchell, D.R.G., Priest, J.M., Short, K.T., Collins, G.A.: The nature of expanded austenite. Surf. Coat. Technol. 131, 300–306 (2000)

    Article  CAS  Google Scholar 

  22. Marchev, K., Cooper, C.V., Blucher, J.T., Giessen, C.B.: Conditions for the formation of a martensitic single-phase compound layer in ion-nitrided 316L austenitic stainless steel. Surf. Coat. Technol. 99, 225–228 (1998)

    Article  CAS  Google Scholar 

  23. Uzumaki, E.T., Lambert, C.S., Belangero, W.D., Freire, C.M.A., Zavaglia, C.A.C.: Evaluation of diamond-like carbon coatings produced by plasma immersion for orthopaedic applications. Diam. Relat. Mater. 15, 982–988 (2006)

    Article  CAS  Google Scholar 

  24. Noli, F., Misaelides, P., Riviere, J.P.: Enhancement of the corrosion resistance of a Ti-based alloy by ion beam deposition methods. Nucl. Instrum. Methods Phys. Res. B 267, 1670–1674 (2009)

    Article  CAS  ADS  Google Scholar 

  25. Dorner-Reisela, A., Schürer, C., Irmer, G., Müller, E.: Electrochemical corrosion behaviour of uncoated and DLC coated medical grade Co28Cr6Mo. Surf. Coat. Technol. 177–178, 830–837 (2004)

    Article  Google Scholar 

  26. Lakatos-Varsanyi, M., Darko, H.: Cyclic voltammetry measurement of different single-, bi- and multilayer TiN and single layer CrN coatings on low-carbon-steel substrates. Corros. Sci. 41, 1585–1598 (1998)

    Article  Google Scholar 

  27. Landolt, D., Mischler, S., Stemp, M.: Electrochemical methods in tribocorrosion: a critical appraisal. Electrochim. Acta 46, 3919–3929 (2001)

    Google Scholar 

  28. Manhabosco, T.M., Müller, I.L.: Tribocorrosion of diamond-like carbon deposited on Ti6Al4V. Tribol. Lett. 33, 193–197 (2009)

    Article  CAS  Google Scholar 

  29. Galliano, F., Galvanetto, E., Mischler, S., Landolt, D.: Tribocorrosion behavior of plasma nitrided Ti–6Al–4V alloy in neutral NaCl solution. Surf. Coat. Technol. 145, 121–131 (2001)

    Article  CAS  Google Scholar 

  30. Watson, S.W., Friedesdorf, F.J., Madsen, B.W., Cramer, S.D.: Methods of measuring wear–corrosion synergism. Wear 181–183, 476–484 (1995)

    Google Scholar 

  31. Songbo, Y., Li, D.Y.: A new phenomenon observed in determining the wear–corrosion synergy during a corrosive sliding wear test. Tribol. Lett. 29, 45–52 (2007)

    Google Scholar 

  32. Gurappa, I.: Characterization of different materials for corrosion resistance under simulated body fluid conditions. Mater. Charact. 49, 73–79 (2002)

    Article  CAS  Google Scholar 

  33. Vidal, C.V., Muñoz, A.I.: Electrochemical characterisation of biomedical alloys for surgical implants in simulated body fluids. Corros. Sci. 50, 1954–1961 (2008)

    Article  Google Scholar 

  34. Landolt, D., Mischler, S., Stemp, M., Barril, S.: Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear 256, 517–524 (2004)

    Article  CAS  Google Scholar 

  35. Azzia, M., Paquette, M., Szpunar, J.A., Klemberg-Sapieha, J.E., Martinu, L.: Tribocorrosion behaviour of DLC-coated 316L stainless steel. Wear 267, 860–866 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, C.B., Haubold, L., Holeczek, H. et al. Wear–Corrosion Resistance of DLC/CoCrMo System for Medical Implants with Different Surface Finishing. Tribol Lett 37, 251–259 (2010). https://doi.org/10.1007/s11249-009-9501-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9501-z

Keywords

Navigation