Tribology Letters

, 36:233 | Cite as

Characterization of Microscale Wear in a Polysilicon-Based MEMS Device Using AFM and PEEM–NEXAFS Spectromicroscopy

  • D. S. Grierson
  • A. R. Konicek
  • G. E. Wabiszewski
  • A. V. Sumant
  • M. P. de Boer
  • A. D. Corwin
  • R. W. Carpick
Original Paper


Mechanisms of microscale wear in silicon-based microelectromechanical systems (MEMS) are elucidated by studying a polysilicon nanotractor, a device specifically designed to conduct friction and wear tests under controlled conditions. Photoelectron emission microscopy (PEEM) was combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and atomic force microscopy (AFM) to quantitatively probe chemical changes and structural modification, respectively, in the wear track of the nanotractor. The ability of PEEM–NEXAFS to spatially map chemical variations in the near-surface region of samples at high lateral spatial resolution is unparalleled and therefore ideally suited for this study. The results show that it is possible to detect microscopic chemical changes using PEEM–NEXAFS, specifically, oxidation at the sliding interface of a MEMS device. We observe that wear induces oxidation of the polysilicon at the immediate contact interface, and the spectra are consistent with those from amorphous SiO2. The oxidation is correlated with gouging and debris build-up in the wear track, as measured by AFM and scanning electron microscopy (SEM).


Microscale wear Microelectromechanical systems (MEMS) Nanotractor Photoelectron emission microscopy (PEEM) Atomic force microscopy (AFM) 


  1. 1.
    Maluf, N.: An introduction to microelectromechanical systems engineering. Meas. Sci. Technol. 13, 229 (2002)CrossRefADSGoogle Scholar
  2. 2.
    Romig Jr., A.D., Dugger, M.T., McWhorter, P.J.: Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability. Acta Mater. 51, 5837 (2003)CrossRefGoogle Scholar
  3. 3.
    de Boer, M.P., Mayer, T.M.: Tribology of MEMS. MRS Bull. 26, 302 (2001)Google Scholar
  4. 4.
    Mehregany, M., Gabriel, K.J., Trimmer, W.S.N.: Integrated fabrication of polysilicon mechanisms. IEEE Trans. Electron. Dev. 35, 719 (1988)CrossRefADSGoogle Scholar
  5. 5.
    Yu-Chong, T., Muller, R.S.: IC-processed electrostatic synchronous micromotors. Sens. Actuators 20, 49 (1989)CrossRefGoogle Scholar
  6. 6.
    Lim, M.G., Chang, J.C., Schultz, D.P., Howe, R.T., White, R.M.: Polysilicon microstructures to characterize static friction. In: Proceedings of IEEE Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensors, Actuators, Machines, pp. 82–88 (1990)Google Scholar
  7. 7.
    Beerschwinger, U., et al.: A study of wear on MEMS contact morphologies. J. Micromech. Microeng. 4, 95 (1994)CrossRefADSGoogle Scholar
  8. 8.
    Sniegowski, J.J., Garcia, E.J.: Surface-micromachined gear trains driven by an on-chip electrostatic microengine. IEEE Electron Device Lett. 17, 366 (1996)CrossRefADSGoogle Scholar
  9. 9.
    Hall, A.C., et al.: Sidewall morphology of electroformed LIGA parts-implications for friction, adhesion, and wear control. J. Microelectromech. Syst. 14, 326 (2005)CrossRefGoogle Scholar
  10. 10.
    Alsem, D.H., et al.: Micron-scale friction and sliding wear of polycrystalline silicon thin structural films in ambient air. J. Microelectromech. Syst. 17, 1144 (2008)CrossRefGoogle Scholar
  11. 11.
    de Boer, M.P., et al.: High-performance surface-micromachined inchworm actuator. J. Microelectromech. Syst. 13, 63 (2004)CrossRefGoogle Scholar
  12. 12.
    Luck, D.L., de Boer, M.P., Ashurst, W.R. Baker, M.S.: Evidence for pre-sliding tangential deflections in MEMS friction. In: TRANSDUCERS ’03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664), vol. 1, pp. 404–407 (2003)Google Scholar
  13. 13.
    Corwin, A.D., De Boer, M.P.: Effect of adhesion on dynamic and static friction in surface micromachining. Appl. Phys. Lett. 84, 2451 (2004)CrossRefADSGoogle Scholar
  14. 14.
    Flater, E.E., et al.: In situ wear studies of surface micromachined interfaces subject to controlled loading. Wear 260, 580 (2006)CrossRefGoogle Scholar
  15. 15.
    Hankins, M.G., Resnick, P.J., Clews, P.J., Mayer, T.M., Wheeler, D.R., Tanner, D.M., Plass, R.A.: Vapor deposition of amino-functionalized self-assembled monolayers on MEMS. In: Proceedings of SPIE—The International Society for Optical Engineering, vol. 4980, pp. 238–247 (2003)Google Scholar
  16. 16.
    Subhash, G., Corwin, A.D., Deboer, M.P.: Operational wear and friction in MEMS devices. American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, MEMS, pp. 207–209 (2004)Google Scholar
  17. 17.
    Tsai, H.M., et al.: Enhancement of Si–O hybridization in low-temperature grown ultraviolet photo-oxidized SiO2 film observed by X-ray absorption and photoemission spectroscopy. J. Appl. Phys. 103, 013704 (2008)CrossRefADSGoogle Scholar
  18. 18.
    Orignac, X., Vasconcelos, H.C., Almeida, R.M.: Structural study of SiO2–TiO2 sol–gel films by X-ray absorption and photoemission spectroscopies. J. Non-Cryst. Solids 217, 155 (1997)CrossRefADSGoogle Scholar
  19. 19.
    Grierson, D.S., et al.: Tribochemistry and material transfer for the ultrananocrystalline diamond-silicon nitride interface revealed by X-ray photoelectron emission spectromicroscopy. J. Vac. Sci. Technol. B 25, 1700 (2007)CrossRefGoogle Scholar
  20. 20.
    Gilbert, B., et al.: X-ray absorption spectroscopy of silicates for in situ, sub-micrometer mineral identification. Am. Mineral. 88, 763 (2003)Google Scholar
  21. 21.
    Patton, S.T., Zabinski, J.S.: Failure mechanisms of a MEMS actuator in very high vacuum. Tribol. Int. 35, 373 (2002)CrossRefGoogle Scholar
  22. 22.
    Walraven, J.A., Headley, T.J., Campbell, A.N., Tanner, D.M.: Failure analysis of worn surface micromachined microengines. In: Proceedings of the SPIE—The International Society for Optical Engineering, vol. 3880, pp. 30–39 (1999)Google Scholar
  23. 23.
    Alsem, D.H., et al.: An electron microscopy study of wear in polysilicon microelectromechanical systems in ambient air. Thin Solid Films 515, 3259 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • D. S. Grierson
    • 1
  • A. R. Konicek
    • 2
  • G. E. Wabiszewski
    • 3
  • A. V. Sumant
    • 4
  • M. P. de Boer
    • 5
  • A. D. Corwin
    • 6
  • R. W. Carpick
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Center for Nanoscale Materials, Argonne National LaboratoriesArgonneUSA
  5. 5.MEMS Devices and Reliability Physics DepartmentSandia National LaboratoriesAlbuquerqueUSA
  6. 6.MEMS Science and Technology DepartmentSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations