Skip to main content
Log in

Improved Elastic Contact Model Accounting for Asperity and Bulk Substrate Deformation

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

An improved elastic contact model for a single asperity system is proposed accounting for both the effects of bulk substrate and asperity deformations. The asperity contact stiffness is based on the Hertzian solution for spherical contact, and the bulk substrate stiffness on the solution of Hertzian pressure on a circular region of the elastic half-space. Depending on the magnitude of the applied load, as well as the geometrical and physical properties of the asperity and bulk materials, the bulk substrate could have considerable contribution to the overall contact stiffness. The proposed single asperity model is generalized using two parameters based on physical and geometrical properties, and is also verified using finite element analysis. A parametric study for a practical range of geometric and physical parameters is performed using finite element analysis to determine the range of validity of the proposed model and also to compare it with the Hertz contact model. The single asperity model is extended to rough surfaces in contact and the contact stiffness from the proposed model and the simpler Greenwood–Williamson asperity model are compared to experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A n :

Nominal contact area

A r :

Real contact area (rough surface contact)

d :

Separation based on asperity heights (rough surface contact)

E :

Effective elastic modulus between asperity and bulk substrate

E a :

Asperity effective elastic modulus

E asperity :

Asperity elastic modulus

E b :

Bulk substrate effective elastic modulus

E bulk :

Bulk substrate elastic modulus

F :

Contact force

F Hertz :

Contact force computed based on Hertz model

g :

Generalized function

H :

Hardness

h a :

Asperity height

h :

Separation based on surface heights (rough surface contact)

K :

Hardness coefficient

k :

Composite spring constant between asperity and bulk substrate

k a :

Asperity spring constant

k b :

Bulk substrate spring constant

k r :

Contact stiffness in rough surface contact

P c :

Contact force (rough surface contact)

p 0 :

Maximum contact pressure

R :

Asperity radius

r :

Radial distance from the center of contact

r b :

Radius of circular contact region on top of bulk substrate

U z :

Normal displacement of the contact surface

u :

Asperity height measured from the mean of asperity heights

δ :

Normal applied displacement (or surface approach)

δ a :

Asperity deformation

δ b :

Bulk substrate deformation

η :

Areal density of asperities

κ :

Physical index parameter

ν a :

Asperity Poisson’s ratio

ν b :

Bulk substrate Poisson’s ratio

ξ :

Geometrical index parameter

σ :

Standard deviation of asperity heights

ϕ :

Distribution function of asperity heights

ω :

Surface interference

ω c :

Critical interference at the inception of plastic deformation

References

  1. Patton, S.T., Zabinski, J.S.: Failure mechanisms of capacitive MEMS RF switch contacts. Tribol. Lett. 19(4), 265–272 (2005)

    Article  CAS  Google Scholar 

  2. Suh, A.Y., Polycarpou, A.A.: Adhesion and pull-off forces for polysilicon MEMS surfaces using the sub-boundary lubrication model. ASME J. Tribol. 125, 193–199 (2003)

    Article  CAS  Google Scholar 

  3. Lee, S.-C., Polycarpou, A.A.: Microtribodynamics of pseudo-contacting head-disk interfaces intended for 1 Tbit/in2. IEEE Trans. Mag. 41(2), 812–818 (2005)

    Article  ADS  Google Scholar 

  4. Barber, J.R., Ciavarella, M.: Contact mechanics. Int. J. Solids Struct. 37, 29–43 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Greenwood, J.A., Williamson, B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966)

    Article  ADS  CAS  Google Scholar 

  6. Chang, W.R., Etsion, I., Bogy, D.B.: An elastic-plastic model for the contact of rough surfaces. ASME J. Tribol. 109, 257–263 (1987)

    Article  Google Scholar 

  7. Kogut, L., Etsion, I.: Elastic-plastic contact analysis of a sphere and a rigid flat. ASME J. Appl. Mech. 69, 657–662 (2002)

    Article  MATH  Google Scholar 

  8. Greenwood, J.A., Wu, J.J.: Surface roughness and contact: an apology. Meccanica 36, 617–630 (2001)

    Article  MATH  Google Scholar 

  9. McCool, J.I.: Comparison of models for the contact of rough surfaces. Wear 107, 37–60 (1986)

    Article  Google Scholar 

  10. Shi, X., Polycarpou, A.A.: Measurement and modeling of normal contact stiffness and contact damping at the meso scale. ASME J Vib. Acoust. 127, 52–60 (2005)

    Article  Google Scholar 

  11. Suh, A.Y., Mate, C.M., Payne, R.N., Polycarpou, A.A.: Experimental and theoretical evaluation of friction at contacting magnetic storage slider-disk interface. Tribol. Lett. 23–3, 177–190 (2006)

    Article  Google Scholar 

  12. Archard, J.F.: Elastic deformation and the laws of friction. Proc. R. Soc. Lond. A 243, 190–205 (1957)

    Article  ADS  Google Scholar 

  13. Majumdar, A., Bhushan, B.: Fractal model of elastic–plastic contact between rough surfaces. ASME J. Tribol. 113, 1–11 (1991)

    Article  Google Scholar 

  14. Sahoo, P., Roy Chowdhury, S.K.: A fractal analysis of adhesive friction between rough solids in gentle sliding. Proc. Inst. Mech. Eng. Part J: J Eng. Tribol. 214, 583–595 (2000)

    Article  Google Scholar 

  15. Komvopoulos, K., Yan, W.: Three-dimensional elastic–plastic fractal analysis of surface adhesion in microelectromechanical systems. ASME J. Tribol. 120, 808–813 (1998)

    Article  CAS  Google Scholar 

  16. Suh, A.Y., Polycarpou, A.A., Conry, T.F.: Detailed surface roughness characterization of engineering surfaces undergoing tribological testing leading to scuffing. Wear 255, 556–568 (2003)

    Article  CAS  Google Scholar 

  17. Mbise, G.W., Niklassont, G.A., Granqvist, C.G.: Scaling of surface roughness in evaporated calcium fluoride films. Solid State Commun. 97, 965–969 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Siegert, M., Plischke, M.: Slope selection and coarsening in molecular beam epitaxy. Phys. Rev. Lett. 73, 1517–1520 (1994)

    Article  PubMed  ADS  CAS  Google Scholar 

  19. Hui, C.Y., Lin, Y.Y., Baney, J.M., Kramer, E.J.: The mechanics of contact and adhesion of periodically rough surfaces. J. Polym. Sci. Part B: Polym. Phys. 39, 1195–1214 (2001)

    Article  CAS  ADS  Google Scholar 

  20. Jeng, Y.-R., Aoh, J.-H., Wang, C.-M.: Thermosonic wire bonding of gold wire onto copper pad using the saturated interfacial phenomena. J. Phys. D Appl. Phys. 34, 3515–3521 (2001)

    Article  ADS  CAS  Google Scholar 

  21. Suh, A.Y., Lee, S.-C., Polycarpou, A.A.: Adhesion and friction evaluation of textured slider surfaces in ultra-low flying head-disk interfaces. Tribol. Lett. 17(4), 739–749 (2004)

    Article  CAS  Google Scholar 

  22. Iida, K., Ono, K.: Design consideration of contact/near-contact sliders based on a rough surface contact model. ASME J. Tribol. 125, 562–570 (2003)

    Article  Google Scholar 

  23. Shi, X., Polycarpou, A.A.: Investigation of contact stiffness and contact damping for magnetic storage head-disk interfaces. ASME J. Tribol. 130, 021901-1-9 (2008)

    Google Scholar 

  24. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Science Foundation under Grant number CAREER CMS-0239232 and the Information Storage Industry Consortium (INSIC) EHDR Program. The roughness measurements were performed at the Center for Microanalysis of Materials at the University of Illinois, which is supported by the U.S. Department of Energy under Grant DEFG02-96-366 ER45439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas A. Polycarpou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeo, CD., Katta, R.R. & Polycarpou, A.A. Improved Elastic Contact Model Accounting for Asperity and Bulk Substrate Deformation. Tribol Lett 35, 191–203 (2009). https://doi.org/10.1007/s11249-009-9448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9448-0

Keywords

Navigation