Skip to main content
Log in

The Effect of Dwell Time on the Static Friction in Creeping Elastic–Plastic Polymer Spherical Contact

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A theoretical model is developed to study the effect of dwell time on the junction growth and static friction of a creeping polymer sphere in contact with a rigid flat under full stick contact condition. A rapid normal loading into the elastic–plastic contact regime is followed by a rest period during which creep takes place causing contact area growth, and stress relaxation that can completely eliminate the plastic zone in the sphere. At the end of this rest time, an increasing tangential loading is applied to the flat till sliding inception occurs. During this loading step, further increase of the contact area and reappearing of a plastic zone in the sphere take place. An increase in static friction resulting from the dwell time during the creep stage is clearly demonstrated and explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Contact area

C1, C2, C3, C4:

Modified time hardening parameters

d :

Diameter of contact area

E :

Young’s modulus of the sphere

K T :

Tangential stiffness

\( K_{\text{T}}^{*} \) :

Dimensionless tangential stiffness \( K_{\text{T}} \omega_{0} /P \)

L c :

Critical normal load for full stick contact condition

P :

Normal load

P*:

Dimensionless normal load P/L c

Q :

Tangential load

Q*:

Dimensionless tangential load Q/L c

R :

Radius of the sphere

t :

Dwell time

u x :

Tangential displacement of the flat

\( u_{x}^{*} \) :

Dimensionless tangential displacement u x /ω 0

x, y, z :

Cartesian coordinates

δ c :

Critical interference for full stick contact condition

ɛ :

Equivalent von Misses strain

μ :

Static friction coefficient

ν :

Poisson’s ratio of the sphere

σ :

Equivalent von Misses stress

σ Y :

Yield stress

ω :

Normal interference

0:

At t = 0

c:

Critical value for first plastic yield under normal load

cr:

Creep component

max:

At sliding inception

References

  1. Rymuza, Z., Kusznierewicz, Z., Solarski, T., Kwacz, M., Chizhik, S.A., Goldade, A.V.: Static friction and adhesion in polymer–polymer microbearings. Wear 238, 56–69 (2000)

    Article  CAS  Google Scholar 

  2. Feyzullahoglu, E., Saffak, Z.: The tribological behaviour of different engineering plastics under dry friction conditions. Mater. Des. 29, 205–211 (2008)

    CAS  Google Scholar 

  3. Deladi, E.L., de Rooij, M.B., Schipper, D.J.: Modeling of static friction in rubber–metal contact. Tribol. Int. 40, 588–594 (2007)

    Article  CAS  Google Scholar 

  4. McKellop, H.A.: The lexicon of polyethylene wear in artificial joints. Biomaterials 28, 5049–5057 (2007)

    Article  PubMed  CAS  Google Scholar 

  5. Li, Y.F., Trauner, D., Talke, F.E.: Effect of humidity on stiction and friction of the head/disk interface. IEEE Trans. Magn. 26, 2487–2489 (1990)

    Article  ADS  CAS  Google Scholar 

  6. Coulomb, C.A.: Theorie des machines simples. Mem. Math. Phys. Acad. Sci. 10, 161–331 (1785)

    Google Scholar 

  7. Merkher, Y., Sivan, S., Etsion, I., Maroudas, A., Halperin, G., Yosef, A.: A rational human joint friction test using a human cartilage-on-cartilage arrangement. Tribol. Lett. 22, 29–36 (2006)

    Article  Google Scholar 

  8. Gitis, N.V., Volpe, L.: Nature of static friction time dependence. J. Phys. D Appl. Phys. 25, 605–612 (1992)

    Article  ADS  Google Scholar 

  9. Ishlinskii, A., Kragelskii, I.: On stick-slip in sliding. J. Tech. Phys. 14, 276–282 (1944). (in Russian)

    Google Scholar 

  10. Kato, S., Sato, N., Matsubayashi, T.: Some considerations on characteristics of static friction of machine tool slideways. J. Lub. Technol. Trans. ASME 94, 234–247 (1972)

    Google Scholar 

  11. Rabinowicz, E.: The intrinsic variables affecting the stick-slip process. Proc. Phys. Soc. Lon. 71, 668–675 (1958)

    Article  Google Scholar 

  12. Ferrero, J.F., Barrau, J.J.: Study of dry friction under small displacement and near-zero sliding velocity. Wear 209, 322–327 (1997)

    Article  CAS  Google Scholar 

  13. Al-Bender, F., Lampaert, V., Swevers, J.: A novel generic model at asperity level for dry friction force dynamics. Tribol. Lett. 16, 81–93 (2004)

    Article  Google Scholar 

  14. Tabor, D.: Junction growth in metallic friction: the role of combined stresses and surface contamination. Proc. R. Soc. A 251, 378–393 (1959)

    Article  ADS  CAS  Google Scholar 

  15. Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 71, 259–268 (1949)

    MathSciNet  Google Scholar 

  16. Chang, W.R., Etsion, I., Bogy, D.B.: A static friction coefficient model for metallic rough surfaces. J. Tribol. Trans. ASME 110, 57–63 (1988)

    Article  Google Scholar 

  17. Kogut, L., Etsion, I.: A semi-analytical solution for the sliding inception of a spherical contact. J. Tribol. Trans. ASME 125, 499–506 (2003)

    Article  Google Scholar 

  18. Brizmer, V., Kligerman, Y., Etsion, I.: Elastic–plastic spherical contact under combined normal and tangential loading in full stick. Tribol. Lett. 25, 61–70 (2007)

    Article  Google Scholar 

  19. Brizmer, V., Kligerman, Y., Etsion, I.: A model for junction growth of a spherical contact. J. Tribol. Trans. ASME 129, 783–790 (2007)

    Article  Google Scholar 

  20. Ovcharenko, A., Halperin, G., Etsion, I.: In situ and real-time optical investigation of junction growth in spherical elastic–plastic contact. Wear 264, 1043–1050 (2008)

    Article  CAS  Google Scholar 

  21. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  22. Brot, C.C., Etsion, I., Kligerman, Y.: A contact model for a creeping sphere and a rigid flat. Wear 265, 598–605 (2008)

    Article  CAS  Google Scholar 

  23. Ovcharenko, A., Halperin, G., Etsion, I.: Experimental study of a creeping polymer sphere in contact with a rigid flat. J. Tribol. Trans. ASME 131, 011404 (2009)

    Article  CAS  Google Scholar 

  24. Findley, W.N., Lai, J.S., Onaran, K.: Creep and Relaxation of Nonlinear Viscoelastic Materials. Dover Publications, Inc., New York (1989)

    Google Scholar 

  25. Cheng, L., Xia, X., Yu, W., Scriven, L.E., Gerberich, W.W.: Flat-punch indentation of viscoelastic material. J. Polym. Sci. B: Polym. Phys. 38, 10–22 (2000)

    Article  CAS  Google Scholar 

  26. Giri, M., Bousfield, D., Unertl, W.N.: Stress intensity in viscoelastic contacts. Tribol. Lett. 9, 33–39 (2000)

    Article  CAS  Google Scholar 

  27. O’Toole, J.L.: Creep Properties of Plastics. McGraw-Hill, New York (1969)

    Google Scholar 

  28. Brizmer, V., Kligerman, Y., Etsion, I.: The effect of contact conditions and material properties on the elasticity terminus of a spherical contact. Int. J. Solids Struct. 43, 5736–5749 (2006)

    Article  MATH  Google Scholar 

  29. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. Roy. Soc. A 295, 300–319 (1966)

    Article  ADS  CAS  Google Scholar 

  30. Bartenev, G.M., Lavrentev, V.V.: Friction and Wear of Polymers. Elsevier, Amsterdam (1981)

    Google Scholar 

  31. Benabdallah, H.S.: Static friction coefficient of some plastics against steel and aluminum under different contact conditions. Tribol. Int. 40, 64–73 (2007)

    Article  CAS  Google Scholar 

  32. Baumberger, T.: Contact dynamics and friction at solid–solid interface: material versus statistical aspects. Solid State Commun. 102, 175–185 (1997)

    Article  ADS  CAS  Google Scholar 

  33. Dokos, S.J.: Sliding friction under extreme pressures. J. Appl. Mech. 13, A148–A156 (1946)

    Google Scholar 

  34. Pascoe, M.W., Tabor, D.: The friction and deformation of polymers. Proc. Roy. Soc. Lon. A 235, 210–224 (1956)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Etsion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malamut, S., Kligerman, Y. & Etsion, I. The Effect of Dwell Time on the Static Friction in Creeping Elastic–Plastic Polymer Spherical Contact. Tribol Lett 35, 159–170 (2009). https://doi.org/10.1007/s11249-009-9445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9445-3

Keywords

Navigation