Skip to main content
Log in

A Theoretical Study of Vapor Lubrication for Heat Assisted Magnetic Recording

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Heat assisted magnetic recording (HAMR) is a promising technique to overcome the superparamagnetic limit to further increase the areal recording density of hard disk drives. However, HAMR brings about serious problems to the slider-disk interface, such as lubricant depletion on disk surface caused by laser heating. It is proposed to overcome the lubricant depletion problem by using vapor lubrication. The lubricant film formation process on disk surface in vapor lubrication is studied theoretically based on fundamental adsorption and desorption theories. The controlling parameters of lubricant film thickness and film formation time are identified. It is found that the lubricant film thickness is controlled mainly by lubricant vapor pressure and molecular weight. The film formation time can be shortened by using low molecular weight lubricant and high temperature lubricant vapor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gui, J.: Tribology challenges for head-disk interface toward 1 Tb/in2. IEEE Trans. Magn. 39, 716–721 (2003). doi:10.1109/TMAG.2003.808999

    Article  CAS  Google Scholar 

  2. Weller, D., Moser, A.: Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423–4439 (1999). doi:10.1109/20.809134

    Article  CAS  Google Scholar 

  3. Lim, M.S., Gellman, A.J.: Kinetics of laser induced desorption and decomposition of Fomblin Zdol on carbon overcoats. Tribol. Int. 38, 554–561 (2005). doi:10.1016/j.triboint.2005.01.006

    Article  CAS  Google Scholar 

  4. Ma, Y.S., Liu, B.: Lubricant depletion caused by thermal-desorption in heat assisted magnetic recording. IEEE Trans. Magn. Accepted

  5. Jones, P.M., Kiely, J.D., Li, L., Sendur, I.K., Hsia, Y.T.: Magnetic recording system with continuous lubrication of recording media. US Patent Application Publication. US 2006/0099461 A1

  6. Waltman, R.J., Khurshudov, A., Tyndall, G.W.: Autophobic dewetting of perfluoropolyether films on amorphous-nitrogenated carbon surfaces. Tribol. Lett. 12, 163–169 (2002). doi:10.1023/A:1014707207255

    Article  CAS  Google Scholar 

  7. Kim, H.I., Mate, C.M., Hannibal, K.A., Perry, S.S.: How disjoining pressure drives the dewetting of a polymer film on a silicon surface. Phys. Rev. Lett. 82, 3496–3499 (1999). doi:10.1103/PhysRevLett.82.3496

    Article  CAS  Google Scholar 

  8. Liu, B., Yu, S.K., Zhang, M.S., Gonzaga, L., Li, H., Liu, J., Ma, Y.S.: Air-bearing design towards highly stable head–disk interface at ultralow flying height. IEEE Trans. Magn. 43, 715–720 (2007). doi:10.1109/TMAG.2006.888366

    Article  Google Scholar 

  9. Adamson, A.W., Gast, A.P.: Physical Chemistry of Surfaces. Wiley, New York (1997)

    Google Scholar 

  10. Paserba, K.R., Gellman, A.J.: Kinetics and energetics of oligomer desorption from surfaces. Phys. Rev. Lett. 86, 4338–4341 (2001). doi:10.1103/PhysRevLett.86.4338

    Article  CAS  Google Scholar 

  11. Paserba, K.R., Gellman, A.J.: Effects of conformational isomerism on the desorption kinetics of n-alkanes from graphite. J. Chem. Phys. 115, 6737–6751 (2001). doi:10.1063/1.1398574

    Article  CAS  Google Scholar 

  12. Yun, Y., Broitman, E., Gellman, A.J.: Adsorption of fluorinated ethers and alcohols on fresh and oxidized carbon overcoats for magnetic data storage. Langmuir 23, 1953–1958 (2007). doi:10.1021/la062107r

    Article  CAS  Google Scholar 

  13. Paserba, K.R., Gellman, A.J.: Desorption kinetics and energetics of monodisperse fomblin Zdol from carbon surfaces. J. Phys. Chem. B 105, 12105–12110 (2001). doi:10.1021/jp012811

    Article  CAS  Google Scholar 

  14. Mate, C.M.: Application of disjoining and capillary pressure to liquid lubricant films in magnetic recording. J. Appl. Phys. 72, 3084–3090 (1992). doi:10.1063/1.351467

    Article  CAS  Google Scholar 

  15. Marchon, B., Karis, T., Dai, Q., Pit, R.: A model for lubricant flow from disk to slider. IEEE Trans. Magn. 39, 2447–2449 (2003). doi:10.1109/TMAG.2003.816433

    Article  CAS  Google Scholar 

  16. Waltman, R.J., Tyndall, G.W., Pacanshy, J.: Computer-modeling study of the interactions of Zdol with amorphous carbon surfaces. Langmuir 15, 6470–6483 (1999). doi:10.1021/la990005d

    Article  CAS  Google Scholar 

  17. Saad, M.: Thermodynamics - principles and practice. Prentice Hall, New Jersey (1997)

    Google Scholar 

  18. Karis, T.E., Marchon, B., Hopper, D.A.: Perfluoropolyether characterization by nuclear magnetic resonance spectroscopy and gel permeation chromatography. J. Fluorine Chem. 118, 81–94 (2002). doi:10.1016/S0022-1139(02)00197-5

    Article  CAS  Google Scholar 

  19. Stirniman, M.J., Falcone, S.J., Marchon, B.: Volatility of perfluoropolyether lubricants measured by thermogravimetric analysis. Tribol. Lett. 6, 199–205 (1999). doi:10.1023/A:1019180211381

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yansheng Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Liu, B. A Theoretical Study of Vapor Lubrication for Heat Assisted Magnetic Recording. Tribol Lett 32, 215–220 (2008). https://doi.org/10.1007/s11249-008-9383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9383-5

Keywords

Navigation