Tribology Letters

, Volume 32, Issue 2, pp 99–107 | Cite as

Development of a Lubrication System for Momentum Wheels Used in Spacecrafts

Original Paper

Abstract

The success of any satellite mission largely depends upon the performance of the attitude control systems such as gyroscopes and momentum/reaction wheels. The required life and performance quality of these rotating mechanisms are ensured by the selection of bearings and its lubrication. The design and development of lubrication system to meet the long-term uninterrupted performance is a challenging task before the tribologists. This article describes the developmental study of a lubrication system for long-term requirements of momentum/reaction wheels. The developed system is compact and can be placed inside the bearing unit assembly. It works on centrifugal force and able to supply lubricant continuously at a very low rate of few micrograms per hour for many years. Further, the system can be tuned for any flow rate depending on the requirement.

Keywords

Spacecraft Momentum wheels EHD lubrication Centrifugal lubricator 

References

  1. 1.
    Zaretsky, E.V.: Liquid Lubrication in Space. NASA Reference Publication-1240, July 1990Google Scholar
  2. 2.
    Fusaro, R.L.: Tribology needs for future space and aeronautical systems. NASA Technical Memorandum 104525, December 1991Google Scholar
  3. 3.
    Park, Y.: Robust and optimal attitude stabilization of spacecraft with external disturbances. Aerosp. Sci. Technol. 9, 253–259 (2005). doi:10.1016/j.ast.2005.01.002 CrossRefGoogle Scholar
  4. 4.
    Narayan, S.S., Nair, P.S., Ghosal, A.: Dynamic interaction of rotating momentum wheels with spacecraft elements. J. Sound. Vib. 315, 970–984 (2008). doi:10.1016/j.jsv.2008.02.020 CrossRefGoogle Scholar
  5. 5.
    Zheng, J., Banks, S.P., Alleyne, H.: Optimal attitude control for three-axis stabilized flexible spacecraft. Acta. Astronaut. 56, 519–528 (2005). doi:10.1016/j.actaastro.2004.10.002 CrossRefGoogle Scholar
  6. 6.
    Kingsbury, E.P., Hanson, R.A., Jones, W.R., Mohr, T.W.: Cartridge bearing system for space applications. In: Proceedings of the 33rd Aerospace Mechanisms Symposium. NASA Conf. Publ. 209259, pp. 137–143 (1999)Google Scholar
  7. 7.
    Kingsbury, E.P.: Influences on polymer formation rate in instrument ball bearings. Tribol. Trans. 35, 184–188 (1992). doi:10.1080/10402009208982107 CrossRefGoogle Scholar
  8. 8.
    Fote, A.A., Slade, R.A., Feuerstein, S.: The prevention of lubricant migration in spacecraft. Wear 51, 67–75 (1978). doi:10.1016/0043-1648(78)90055-8 CrossRefGoogle Scholar
  9. 9.
    Lowenthal, S., Boesinger, E., Donley, A.: International Rolling Element Symposium 91, Sponsored by C.S. Draper Lab and DOD, Instrument Bearing Working Group, 8–11 April 1991Google Scholar
  10. 10.
    Boesiger, E.A., Warner, M.H.: Spin bearing retainer design optimization. In: Proceedings of the 25th Aerospace Mechanisms Symposium. NASA Conf. Publ. 3113, pp. 161–178 (1991)Google Scholar
  11. 11.
    Gupta, P.K.: Cage unbalance and wear in ball bearings. Wear 147, 93–104 (1991). doi:10.1016/0043-1648(91)90121-A CrossRefGoogle Scholar
  12. 12.
    Gupta, P.K.: Frictional instabilities in ball bearings. Tribol. Trans. 31(2), 258–268 (1988)CrossRefGoogle Scholar
  13. 13.
    Space Mechanisms Lessons Learned Study. http://www.grc.nasa.gov/WWW/spacemech/
  14. 14.
    Kannel, J.W., Bupara, S.S.: A simplified model of cage motion in angular contact ball bearings operating in the EHD region. J. Lubr. Technol. ASME Trans. 100(2), 395–403 (1978)Google Scholar
  15. 15.
    Kannel, J.W., Snediker, D.: Hidden Cause of Bearing Failure. Machine Design, pp. 78–82, April (1977)Google Scholar
  16. 16.
    Shogrin, B.A., Jones, W.R. Jr., Kingsbury, E.P., Prahl, J.M.: Experimental Determination of Load Carrying Capacity of Point Contact at Zero Entrainment Velocity. NASA/TM-1999-208848, January 1999Google Scholar
  17. 17.
    Singer, H.B., Gelotte, E.: Design of a high-speed reliable ball bearing. In: Proceedings of the 28th Aerospace Mechanisms Symposium, NASA Conf. Publ. 3260, pp. 279–283, May 1994Google Scholar
  18. 18.
    Jones, W.R. Jr., Shogrin, B.A., Kingsbury, E.P.: Long-term performance of a retainerless baring cartridge with an oozing flow lubricator for space application. In: Proceedings of the International Rolling Element Bearing Symposium, April 1997Google Scholar
  19. 19.
    Kingsbury, E.: Cross flow in a starved EHD contact. ASLE Trans. 16, 276–280 (1973)Google Scholar
  20. 20.
    Hashimoto, F.: Ooze Flow Bearing. United State Patent, Patent no.: 6290397, 18 September 2001Google Scholar
  21. 21.
    Kingsbury, E.P., Hanson, R.A., Jones, W.R., Mohr, T.W.: Cartridge bearing system for space applications. In: Proceedings of the 33rd Aerospace Mechanisms Symposium. NASA Conf. Publ. 209259, pp. 137–143 (1999)Google Scholar
  22. 22.
    Singer, H.B., Gelotte, E.: Design of a high-speed reliable ball bearing. In: Proceedings of the 28th Aerospace Mechanisms Symposium, NASA Conf. Publ, 3260, pp. 279–283 (1994)Google Scholar
  23. 23.
    Loewenthal, S.H., Scibbe, H.W., Parker, R.J., Zaretsky, E.V.: Operating Characteristics of a 0.87 kW-hr Flywheel Energy Storage Module. NASA Technical Memorandum 87038, August 1985Google Scholar
  24. 24.
    Marchetti, M., Meurisse, M.H., Vergne, P., Sicreb, J., Durand, M.: Analysis of oil supply phenomena by sintered porous reservoirs. Tribol. Lett. 10(3), (2001). doi:10.1023/A:1009026123907
  25. 25.
    Sathyan, K.: Long-term lubrication systems for momentum wheels used in spacecrafts. MS Thesis, Indian Institute of Technology Madras, September 2003Google Scholar
  26. 26.
    Smith, D.W., Hooper, F.L.: Positive lubrication system. In: Proceedings of the 24th Aerospace Mechanisms Symposium. NASA Conf. Publ. 3062, pp. 243–258, (1990)Google Scholar
  27. 27.
    James, G.E.: Positive commandable oiler for satellite bearing lubrication. In: 11th Aerospace Mechanisms Symposium, NASA CP-2038, pp. 87–95 (1977)Google Scholar
  28. 28.
    Marchetti, M., Jones, W.R. Jr., Pepper, S.V., Jansen, M.J., Predmore, R.E.: In-Situ, On-Demand Lubrication System for Space Mechanisms. NASA Technical Memorandum 2002-211706, July 2002Google Scholar
  29. 29.
    Jones, W.R. Jr., Jansen, M.J.: Lubrication for space application. NASA Contractor Report-2005-213424, January 2005Google Scholar
  30. 30.
    Collins, R.E.: Flow Through Porous Materials. Reinhold Publishing Corporation, New York (1961)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • K. Sathyan
    • 1
  • K. Gopinath
    • 2
  • H. Y. Hsu
    • 1
  • S. H. Lee
    • 1
  1. 1.School of Manufacturing and Mechanical EngineeringUniversity of South AustraliaAdelaideAustralia
  2. 2.Indian Institute of Technology MadrasChennaiIndia

Personalised recommendations