# A Model for Magnetic Tape/Guide Friction Reduction by Laser Surface Texturing

• Original Paper
• Published:

## Abstract

The friction coefficient between a magnetic tape and a guide in a tape path can be minimized by creating micro dimples on the guide surface with laser surface texturing. The dimples enhance the formation of an air bearing and reduce the friction coefficient between the tape and the guide due to the increased spacing. A model is presented to optimize the geometry of the surface texturing parameters to maximize the average air bearing pressure and minimize the tape/guide friction coefficient.

This is a preview of subscription content, log in via an institution to check access.

## Subscribe and save

Springer+ Basic
\$34.99 /Month
• Get 10 units per month
• 1 Unit = 1 Article or 1 Chapter
• Cancel anytime

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

## Abbreviations

c :

Minimum tape/guide spacing

H(X,Y):

Dimensionless spacing, H = h/c

H *(X *,Y *):

Dimensionless spacing in local coordinates, H * = h */c

h(x,y):

Tape/guide spacing in global coordinates

h *(x *,y *):

Tape/guide spacing in local coordinates

h p :

Depth of dimple

N :

Number of dimples in a column

P(X,Y):

Dimensionless pressure, P = p/p a

p(x,y):

Air bearing pressure

p a :

Atmospheric pressure

p avg :

Average air bearing pressure

r 1 :

Imaginary cell half length

r p :

R :

S p :

Dimple area density

T :

Tape tension per unit tape width

w :

Width of the tape

X, Y :

Dimensionless coordinate, X = x/r p,   Y = y/r p

X *, Y * :

Dimensionless local coordinate, X * = x */r p,   Y * = y */r p

x, y :

Global coordinate

x *, y * :

Local coordinate

δ:

Dimensionless minimum tape/guide spacing, δ = c/2r p

ɛ:

Dimple aspect ratio, ɛ = h p/2r p

γ:

Over-relaxation parameter

λ:

Flow parameter, λ = 3μa U/2r p p a

σs :

Standard deviation of asperity summit heights

## References

1. Richards, D.B., Sharrock, M.P.: Key issues in the design of magnetic tape for linear systems of high track density. IEEE Trans. Magn. 34(4), 1878–1882 (1998)

2. Taylor, R.J., Talke, F.E.: Investigation of roller interactions with flexible tape medium. Tribol. Int. 38, 599–605 (2005)

3. Raeymaekers, B., Talke, F.E.: Lateral motion of an axially moving tape on a cylindrical guide surface. J. Appl. Mech. Trans. ASME, doi: 10.1115/1.2723823 (2007)

4. Ono, K.: Lateral motion of an axially moving string on a cylindrical guide surface. J. Appl. Mech. Trans. ASME 46, 905–912 (1979)

5. Taylor, R.J., Strahle, P., Stahl, J., Talke, F.E.: Measurement of cross-track motion of magnetic tapes. J. Info. Storage Proc. Syst. 2, 255–261 (2000)

6. Raeymaekers, B., Etsion, I., Talke, F.E.: The influence of design and operating parameters on the magnetic tape/guide friction coefficient. Tribol Lett 25(2), 161–171 (2007)

7. Raeymaekers, B., Etsion, I., Talke, F.E.: Enhancing tribological performance of the magnetic tape/guide interface by laser surface texturing. Tribol. Lett. 27(1), 89–95 (2007)

8. Scott, D.A., Brandt, M., Dorien-Brown, B., Valentine, B., De, P.: Laser modification of metal surfaces. Opt. Laser Eng. 18, 1–13 (1993)

9. Duffet, G., Sallamand, P., Vannes, A.B.: Improvement in friction by cw Nd:YAG laser surface treatment on cast iron cylindrical bore. Appl. Surf. Sci. 205, 289–296 (2003)

10. Erdemir, A.: Review of engineered tribological interfaces for improved boundary lubrication. Tribol. Int. 38, 249–256 (2005)

11. Etsion, I.: State of the art in laser surface texturing. J. Tribol. Trans. ASME 27, 248–253 (2005)

12. Hashimoto, H., Okajima, M.: Theoretical and experimental investigations into spacing characteristics between roller and three types of webs with different permeabilities. J. Tribol. Trans. ASME 128, 267–274 (2006)

13. Lacey, C., Talke, F.E.: A tightly coupled numerical foil bearing solution. IEEE Trans. Magn. 26(6), 3039–3043 (1990)

14. Patir, N., Cheng, H.S.: Average flow model for determining effects of 3-dimensional roughness on partial hydrodynamic lubrication. J. Lubr. Technol. Trans. ASME 100(1), 12–17 (1978)

15. Kligerman, Y., Etsion, I.: Analysis of the hydrodynamic effects in a surface textured circumferential gas seal. Tribol. Trans. 44(3), 472–478 (2001)

16. Feldman, Y., Kligerman, Y., Etsion, I.: A hydrostatic laser surface textured gas seal. Tribol. Lett. 22(1), 21–28 (2006)

17. Hirsch, C.: Numerical Computation of Internal and External Flows, vol. 1. John Wiley and Sons, New York (1988)

18. McCool, J.I.: Relating profile instrument measurements to the functional performance of rough surfaces. J. Tribol. Trans. ASME 109, 264–270 (1987)

19. Eshel, A., Elrod, H.G.: The theory of the infinitely wide, perfectly flexible, self-acting foil bearing. J. Basic Eng. Trans. ASME 87, 831–836 (1965)

20. Hempstock, M.S., Sullivan, J.L.: The durability and signal performance of metal evaporated and metal particle tape. IEEE Trans. Magn. 32(5), 3723–3725 (1996)

21. Hempstock, M.S., Sullivan, J.L.: A study of the mechanical and magnetic performance of metal evaporated tape. J. Magn. Magn. Mater. 155, 323–328 (1996)

## Author information

Authors

### Corresponding author

Correspondence to Bart Raeymaekers.

## Rights and permissions

Reprints and permissions

Raeymaekers, B., Etsion, I. & Talke, F.E. A Model for Magnetic Tape/Guide Friction Reduction by Laser Surface Texturing. Tribol Lett 28, 9–17 (2007). https://doi.org/10.1007/s11249-007-9242-9