Skip to main content
Log in

Static Performance of Finite Hydrodynamic Journal Bearings Lubricated by Magnetic Fluids with Couple Stresses

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Based upon the Stokes micro-continuum theory, the problem of lubrication of finite hydrodynamic journal bearing lubricated by magnetic fluids with couple stresses is investigated. By taking into account the couple stresses due to the microstructure additives and the magnetic effects due to the magnetization of the magnetic fluid, modified Reynolds equation is obtained. The effects of couple stresses are studied by defining the couple stress parameter L that can be considered as a measure of the chain length of the additive molecule. The magnetic effects of the magnetic fluid are investigated by the magnetic coefficient γ. Using the finite-difference technique and for different values of couple stress parameter and magnetic coefficient, the Reynolds equation is solved, and pressure distributions are obtained. The bearing static characteristics namely load carrying capacity, attitude angle, friction coefficient, and side leakage flow are determined. The results indicate that the influence of couple stresses and magnetic effects on the bearing characteristics are significantly apparent. It is concluded that fluids with couple stresses are better than Newtonian fluids. The improvement of the bearing characteristics is enhanced if the magnetic effects are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C :

Bearing clearance

e :

Eccentricity of the journal center

F j :

Friction force at the journal surface

F :

Dimensionless friction force   \({F=\frac{F_{j}(C/R)^{2}}{\mu \omega L_b C}}\)

f :

Friction coefficient   \({f=\frac{F_{j}}{w}=(C/R)\frac{F}{W}}\)

F m :

Unit volume value of the induced magnetic force

F mx :

Magnetic force in x direction (circumferential direction)

F mz :

Magnetic force in z direction (axial direction)

h :

Lubricant film thickness

H :

Dimensionless film thickness   H = h/C

h m :

Magnetic field intensity

h mo :

Characteristic value of magnetic field intensity

H m :

Dimensionless magnetic field intensity   H m  = h m /h mo

I :

Strength of the current passing through the wire

K :

Distance ratio parameter   K = R o /R = 1.2

l :

Couple stress parameter   \({l=\left({\frac{\eta}{\mu}}\right)^{1/2}}\)

L :

Dimensionless couple stress parameter   L = l/C

L b :

Bearing length

p :

Lubricant pressure

P :

Dimensionless pressure   \({P=\frac{p(C/R)^{2}}{\mu\omega}}\)

q :

Bearing side leakage

Q :

Dimensionless side leakage   \({Q=\frac{2q}{L_{b}RC\omega}}\)

R :

Bearing or journal radius

R o :

Distance from the wire position to the bearing center

u:

Circumferential velocity component

v:

Radial velocity component

w:

Axial velocity component

w :

Load carrying capacity

W :

Dimensionless load carrying capacity   \({W=\frac{w(C/R)^{2}}{\mu\omega L_{b}R}}\)

W ɛ :

Dimensionless load capacity component in the eccentricity direction

W φ :

Dimensionless load capacity component in the direction normal to the eccentricity

X m :

Susceptibility of magnetic fluid

x, y, z:

Cartesian coordinates

Z :

Dimensionless axial distance   Z = z/L b

γ:

Magnetic coefficient   \({\gamma =\frac{(h_{mo})^{2}\mu _{o}X_{m}C^{2}}{\mu \omega L_{b} ^{2}}}\)

ɛ:

Eccentricity ratio   ɛ =  e / C

φ:

Attitude angle

λ:

Length to diameter ratio   λ = L b /2R

η:

Material constant responsible for the couple stress property

μ:

Fluid viscosity

θ:

Angular coordinate   θ =  x / R

μ o :

Permeability of free space of air   μ o  = 4π.10−7 AT/m

ρ:

Lubricant density

ψ:

Position angle of the displaced wire magnetic models   ψ = π/2

τ:

Shear stress

ω:

Angular speed

References

  1. Saynatjoki, M., Holmberg, K.: Magnetic fluids in sealing and lubrication–a state of art review. Technical Research Center of Finland, February 10, 119–131 (1982)

  2. Rosensweig, R.E., Kaiser, R., Miskolczy, G.: Viscosity of magnetic fluid in a magnetic field. J. Colloid Interf. Sci. 29(4), 680–686 (1969)

    Article  CAS  Google Scholar 

  3. Rosensweig, R.E.: Magnetic fluids. Sci. Am. 247(4), 124–132 (1982)

    Article  Google Scholar 

  4. Raj, K., Boulton, R.J.: Ferrofluids-properties and applications. J. Mat. Design 8, 233–236 (1987)

    Article  Google Scholar 

  5. Moskowitz, R.: Designing with ferrofluids. Mech. Eng. 97, 30–36 (1975)

    Google Scholar 

  6. Miyake, S., Takahashi, S.: Sliding bearing lubricated with ferromagnetic fluid. ASLE 28, 461–466 (1985)

    CAS  Google Scholar 

  7. Goldowsky, M.: New methods for sealing, filtering, and lubricating with magnetic fluids. IEEE T. Magn. Mag.-16, 382–386 (1980)

    Article  Google Scholar 

  8. Tarapov, I.E.: Movement of a magnetizable fluid in the lubricating layer of a cylindrical bearing. Magnetohydrodynamics 8, 444–448 (1972)

    Google Scholar 

  9. Prajapati, B.L.: Magnetic-fluid-based porous squeeze films. J. Magn. Magn. Mater. 149, 97–100 (1995)

    Article  CAS  Google Scholar 

  10. Tipei, N.: Theory of lubrication with ferrofluids: application to short bearings. ASME J. Lubr. Technol. 104, 510–515 (1982)

    Article  Google Scholar 

  11. Tipei, N.: Overall characteristics of bearings lubricated with ferrofluids. ASME J. Lubr. Technol. 105, 466–475 (1983)

    Google Scholar 

  12. Sorge, F.: A numerical approach to finite journal bearings lubricated with ferrofluid. ASME J. Tribol. 109, 77–82 (1987)

    Article  Google Scholar 

  13. Chang, H.S., Chi, C.Q., Zhao, P.Z.: A theoretical and experimental study of ferrofluid lubricated four-pocket journal bearings. J. Magn. Magn. Mater. 65, 372–374 (1987)

    Article  CAS  Google Scholar 

  14. Zhang Y.: Static characteristics of magnetized journal bearing lubricated with ferrofluid. ASME J. Tribol. 113, 533–538 (1991)

    Article  Google Scholar 

  15. Osman, T.A.: Static characteristics of hydrodynamic magnetic bearings working by non-Newtonian ferrofluid. J. Eng. Appl. Sci., Faculty of Engineering, Cairo University 46(3), 521–536 (1999)

    Google Scholar 

  16. Osman, T.A., Nada, G.S., Safar, Z.S.: Dynamic characteristics of magnetized journal bearings lubricated with Newtonian and non-Newtonian ferrofluids. Proceedings of sixth international conference on production engineering and design for development, Cairo, Egypt pp. 834–849 (2002)

  17. Osman, T.A., Nada, G.S., Safar, Z.S.: Different magnetic models in the design of hydrodynamic journal bearings lubricated with non-Newtonian ferrofluid. Tribol. Lett. 14(3), 211–223 (2003)

    Article  CAS  Google Scholar 

  18. Ariman, T., Turk, M.A., Sylvester, N.D.: Microcontinuum fluid mechanics–a review. Int. J. Eng. Sci. 11, 905–930 (1973)

    Article  Google Scholar 

  19. Ariman, T., Turk, M.A., Sylvester, N.D.: Applications of microcontinuum fluid mechanics. Int. J. Eng. Sci. 12, 273–293 (1974)

    Article  Google Scholar 

  20. Stokes, V.K.: Couple stresses in fluids. Phys. Fluids 9, 1709–1715 (1966)

    Article  CAS  Google Scholar 

  21. Ramanaiah, G., Sarker, P.: Slider bearings lubricated by fluids with couple stress. Wear 52, 27–36 (1979)

    Article  Google Scholar 

  22. Das, N.C.: A study of optimum load-bearing capacity for slider bearings lubricated with couple stress fluids in magnetic field. Tribol. Int. 31, 393–400 (1998)

    Article  CAS  Google Scholar 

  23. Ramanaiah, G.: Squeeze films between finite plates lubricated by fluids with couple stresses. Wear 54, 315–320 (1979)

    Article  Google Scholar 

  24. Lin, J.R.: Squeeze film characteristics of finite journal bearings: couple stress fluid model. Tribol. Int. 31, 201–207 (1998)

    Article  CAS  Google Scholar 

  25. Sinha, P., Singh, C.: Couple stresses in the lubrication of rolling contact bearings considering cavitation. Wear 67, 85–98 (1981)

    Article  CAS  Google Scholar 

  26. Bujurke, N.M., Naduvinamani, N.B.: The lubrication of lightly loaded cylinders in combined rolling, sliding and normal motion with couple stress fluid. Int. J. Mech. Sci. 32, 969–979 (1990)

    Article  Google Scholar 

  27. Mokhiamer, U.M., Crosby, W.A., El-Gamal, H.A.: A study of a journal bearing lubricated by fluids with couple stress considering the elasticity of the liner. Wear 224, 194–201 (1999)

    Article  CAS  Google Scholar 

  28. Naduvinamani, N.B., Hiremath, P.S., Gurubasavaraj, G.: Effect of surface roughness on the static characteristics of rotor bearings with couple stress fluids. Comput. Struct. 80, 1243–1253 (2002)

    Article  Google Scholar 

  29. Naduvinamani, N.B., Hiremath, P.S., Gurubasavaraj, G.: Surface roughness effects in a short porous journal bearing with a couple stress fluid. Fluid Mech. Res. 31, 333–354 (2002)

    Google Scholar 

  30. Wang, X.L., Zhu, K.Q., Wen, S.Z.: On the performance of dynamically loaded journal bearings lubricated with couple stress fluids. Tribol. Int. 35, 185–191 (2002)

    Article  CAS  Google Scholar 

  31. Cowley, M.D., Rosensweig, R.E.: The interfacial stability of ferromagnetic fluid. J. Fluid Mech. 30, 671–688 (1967)

    Article  CAS  Google Scholar 

  32. Zelazo, R.E., Melcher, J.R.: Dynamic and stability of ferrofluids: surface interaction. J. Fluid Mech. 39, 1–24 (1969)

    Article  CAS  Google Scholar 

  33. Pinkus, O., Sternlicht, B.: Theory of Hydrodynamic Lubrication. McGraw-Hill, NY (1961)

    Google Scholar 

  34. Osman, T.A., Nada, G.S., Safar, Z.S.: Effect of using current-carrying-wire models in the design of hydrodynamic journal bearings lubricated with ferrofluid. Tribol. Lett. 11(1), 61–70 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Nada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nada, G.S., Osman, T.A. Static Performance of Finite Hydrodynamic Journal Bearings Lubricated by Magnetic Fluids with Couple Stresses. Tribol Lett 27, 261–268 (2007). https://doi.org/10.1007/s11249-007-9222-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-007-9222-0

Keywords

Navigation