Skip to main content
Log in

Influence of protein conformation on frictional properties of poly (vinyl alcohol) hydrogel for artificial cartilage

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Poly (vinyl alcohol) (PVA) hydrogel is one of the anticipated materials for artificial cartilage. In our previous studies, wear of PVA hydrogel depended on content of proteins in lubricants. The secondary structures of bovine serum albumin (BSA) and human gamma globulin (HGG) were investigated in circular dichroism spectroscopy to clarify the influence of the proteins on frictional properties. BSA and HGG were mainly composed of the α-helix and the β-sheet, respectively. BSA containing the α-helix structure showed low friction compared to HGG composed of the β-sheet structure in mixed or boundary lubrication mode. The α-helix structure forms low shear layer because the α-helix structure is easily released from surfaces and low cohesive strength. HGG forms uniform adsorption layer, but showed higher friction than BSA in the rubbing with single protein. In the repeated rubbing with changing of lubricants from HGG to BSA, however, the final friction was reduced, because an optimum layered structure of proteins was formed. Hence, layered structure of proteins appears to play an important role to protect rubbing surfaces and to reduce friction. In heat treatment tests, heat-induced BSA showed very low friction because of reduction of the α-helix structure. Heat-induced HGG did not show large differences from native HGG, but could not bring low friction with heat-induced BSA. Thus it was shown that the protein conformation has effective influences on friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6. Changes
Figure 7. Changes
Figure 8. Adsorbed

Similar content being viewed by others

References

  1. A. Unsworth, Tribol. Int., 28(7) (1995) 485

    Article  CAS  Google Scholar 

  2. G. Lewis, J. Biomed Mater Res Appl Biomater, 38 (1997) 55

    Article  CAS  Google Scholar 

  3. T.M. McGloughlin, A.G. Kavanagh, Proc. Instn. Mech. Engrs., 24 (Part H) (2000) 349

    Google Scholar 

  4. H.C. Amstutz, P. Campbell, N. Kossovsky, I.C. Clarke, Clin. Orthop., 276 (1992) 7

    Google Scholar 

  5. L.C. Sutula, J.P. Collier, K.A. Saum, Clin. Orthop., 319 (1995) 28

    Google Scholar 

  6. D. Dowson, Proc. Inst. Mech. Eng., Int. Conf. The Changing Role of Engineering in orthopedics, C384/KN1 (1989) 1

    Google Scholar 

  7. T. Murakami, Y. Sawae, H. Higaki, N. Ohtsuki and S. Moriyama, Elatohydrodynamics ‘96, edited by D. Dowson et al., (Elsevier, 1997) 371

  8. T. Murakami, H. Higaki, Y. Sawae, N. Ohtsuki, S. Moriyama and Y. Nakanishi, Proc. Instn. Mech. Engrs. 212, Part H: J. Engng. in Medicine (1998) 23

  9. T. Murakami, Proc. Biotribology Satelllite Forum of ITC Nagasaki, 2000 and 21st Biotribology Symposium (2000) 1

  10. K. Nakashima, T. Murakami, Y. Sawae, Trans. JSME. Ser. C (in Japanese), 70(697) (2004) 218

    Google Scholar 

  11. K. Nakashima, T. Murakami, Y. Sawae, Proc. The International Tribology Conference Nagasaki, 2000 (2001) 1537

    Google Scholar 

  12. K. Nakashima, Y. Sawae, T. Murakami, JSME International Journal, 48(4) (2005) 555

    Article  CAS  Google Scholar 

  13. A. Vermeer, M. Bremer, W. Noede, Biochim. Biophys .Acta., 1425 (1998) 1

    CAS  Google Scholar 

  14. A. Sethuraman, M. Han, R. Kane, G. Belfort., Langmuir, 20(18) (2004) 7779

    Article  CAS  Google Scholar 

  15. A. Wittemann, M. Ballauff, Anal. Chem., 76 (2004) 2813

    Article  CAS  Google Scholar 

  16. N. Greenfield, G. Fasman, Biochem., 8(10) (1969) 4108

    Article  CAS  Google Scholar 

  17. M. Tanaka, T. Motomura, M. Kawada, T. Anzai, Y. Kasori, T. Shiroya, K. Shimura, M. Onishi, A. Mochizuki, Biometerials, 21 (2000) 1471

    Article  CAS  Google Scholar 

  18. J. Bray, E. Merrill, J. Biomed. Mater. Res., 7 (1973) 431

    Article  CAS  Google Scholar 

  19. T. Noguchi, T. Yamamoto, M. Oka, J. Appl. Biomater., 2 (1991) 101

    Article  CAS  Google Scholar 

  20. T. Murakami, N. Otsuki and H. Higaki, Thin Films in Tribology, edited by D. Dowson et al., (Elsevier, 1993) 673

  21. Gu. Zhen-Oiu, Xiao Jiu-Mei, Zhang Xiang-Hong, Biomed. Mater. Eng., 8 (1998) 75

    Google Scholar 

  22. M Oka, K Usio, K Ikeuchi, S H Hyon, T Nakamura, H Fujita, Proc. Instn. Mech. Engrs., 214(Part H) (2000) 59

    CAS  Google Scholar 

  23. J.P. Gong, M. Higa, Y. Iwasaki, Y. Katsuyama, Y. Osada, J. Phys. Chem. B, 101 (1997) 5487

    Article  CAS  Google Scholar 

  24. J.P. Gong, Y. Iwasaki, Y. Osada, K. Kurihara, Y. Hamai, J. Phys. Chem. B, 103 (1999) 6001

    Article  CAS  Google Scholar 

  25. J.P. Gong, G. Kagata, Y. Osada, J. Phys. Chem. B, 103 (1999) 6007

    Article  CAS  Google Scholar 

  26. K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, N. Nakabayasi, J. Biomed. Mater. Res., 39 (1998) 323

    Article  CAS  Google Scholar 

  27. J. Kardos, D. Okuno, T. Kawai, Y. Hagihara, N. Yumoto, T. Kitagawa, P. Zavodszky, H. Naiki, Y. Goto, Biochim. Biophys. Acta., 1753 (2005) 108

    CAS  Google Scholar 

  28. A. Vermeer, W. Norde, Biophys. J., 78 (2000) 394

    Article  CAS  Google Scholar 

  29. C. Chang, C. Wu, J. Yang, Anal. Biochem., 91 (1978) 13

    Article  CAS  Google Scholar 

  30. G. Sigal, J. Am. Chem. Soc., 120 (1998) 3464

    Article  CAS  Google Scholar 

  31. M.R. Widmer, M. Heuberger and N.D. Spencer, Boundary and mixed lubrication: Science and applications, edited by D. Dowson et al., (Elsevier 2002) 361

  32. M.P. Heuberger, M.R. Widmer, E. Zobeley, R. Glockshuber and N.D. Spencer, Biomaterials, 26 (2005) 1165

    Article  CAS  Google Scholar 

  33. Y. Sawae and T. Murakami, Proc. 5th World Congress of Biomechanics (2006) in CD

Download references

Acknowledgments

Authors would like to thank Dr. Masayuki Takeuchi for his technical advices in the CD measurement and the CD measurement was conducted at the Center of Advanced Instrumental Analysis, Kyushu University. This study was partly supported by the Grant-in-Aid for Scientific Research (A) No. 15200037, No. 16760112 from Japan Society for the Promotion of Science, and No.15086212 from Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nakashima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakashima, K., Sawae, Y. & Murakami, T. Influence of protein conformation on frictional properties of poly (vinyl alcohol) hydrogel for artificial cartilage. Tribol Lett 26, 145–151 (2007). https://doi.org/10.1007/s11249-006-9185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-006-9185-6

Keywords

Navigation