Skip to main content
Log in

An energy-based model for the wear of UHMWPE

  • Published:
Tribology Letters Aims and scope Submit manuscript

An energetic approach to model the wear of tribological systems in which one of the components of the pair is polymeric is presented in this work. Experimental data, obtained in ultra-high molecular weight polyethylene (UHMWPE) pin-on-disk tribological tests, showed that a linear correlation between the wear rate of the polymer and the dissipated energy exists, independently of the lubricant, of the material used as counterbody and of the surface finishing of both polymer and counterbody. This fact strongly suggests that, in UHMWPE-based tribological systems, energy dissipation is mainly caused by the elasto-plastic deformation and wear of the polymer. Based on this assumption, it is developed a mathematical model that yields for a physical interpretation of the parameters of the experimental wear vs. energy correlation. These parameters are intrinsic wear properties of the polymer and can be used for the optimization of polymer-based tribological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  1. Huq M.Z., Celis (2002) Wear 252:375

    Article  CAS  Google Scholar 

  2. Fouvry S., Liskiewicz T., Kapsa P., Hannel S., Sauger E. (2003) Wear 255:287

    Article  CAS  Google Scholar 

  3. Fouvry S., Liskiewicz T. (2005) Trib. Int. 38:69

    Article  Google Scholar 

  4. Ramalho A., Miranda J.C. (2006) Wear 260:361

    Article  CAS  Google Scholar 

  5. S.K. Sinha in ASM International Handbook. (ASM International, Ohio, 2002, 1019)

  6. Satyanarayana N., Sinha S.K., Ong B.H. (2006) Sens. Actuators - A 128:98

    Article  Google Scholar 

  7. McKellop H., Clarke I.C., Markolf K.L., Amstutz H.C. (1978) J. Biomed Mater. Res. 12(6):895

    Article  CAS  Google Scholar 

  8. Wright T.M., Fukubayashi T., Burstein A.H. (1991) J. Biomed. Mater. Res. 15:719

    Article  Google Scholar 

  9. S. Li and E.G. Howard US Patent 5-037-928-1991, USA (1991)

  10. Muratoglu O.K., Bragdon C.R., O’Connor D.O., Jasty M., Harris W.H. (2001) J. Arthopl. 16(2):149

    Article  CAS  Google Scholar 

  11. Pichat A., Rabbe L.M., Rieu J., Rambert A., Chabrol C., Robelet M. (1991) Surf. Coat. Tech. 45(1–3):15

    Article  CAS  Google Scholar 

  12. Alonso F., Ugarte J.J., Sansom D., Viviente J.L., Oñate J.I. (1996) Surf and Coat Tech 83:301

    Article  CAS  Google Scholar 

  13. Torrisi L., Visco A.M., Valenza A. (2003) Radiation Effects and Defects in Solids 158(9):621

    CAS  Google Scholar 

  14. Gutmanas E.Y., Gotman I. (2004) J. Mater. Sci. – Mat. Med. 15(4):327

    Article  CAS  Google Scholar 

  15. Xiong D.S., Jin Z.M. (2004) Surf. Coat. Tech. 182(2–3):149

    CAS  Google Scholar 

  16. M.P. Gispert, A.P. Serro, R. Colaço, A. Rego, E. Alves, R.C. Silva, P. Brogueira, E. Pires and B. Saramago, Wear (in press)

  17. Sawae Y., Murakami T., Chen J. (1998) Wear 216:213

    Article  CAS  Google Scholar 

  18. Saikko V. (2003) Trans. ASME 125:638

    Article  CAS  Google Scholar 

  19. Gispert M.P., Serro A.P., Colaço R., Saramago B. (2006) Wear 260:149

    Article  CAS  Google Scholar 

  20. Serro A.P., Gispert M.P., Martins M.C.L., Brogueira P., Colaço R., Saramago B. (2006) J. Biomed. Mat. Res.: Part A 78A(3):581

    Article  CAS  Google Scholar 

  21. Wang A., Polieni V.K., Stark C., Dumbleton J.H. (1998) J. Arthoplasty 13(6):615

    Article  CAS  Google Scholar 

  22. Saikko V., Calonius O., Keranen J. (2001) J. Biomed. Mat. Res. 57(4):506–512

    Article  CAS  Google Scholar 

  23. M.P. Gispert, A.P. Serro, R. Colaço, and B. Saramago, J. Biomed. Mater. Res.: Part B (submitted)

  24. Morbacher H., Blanpain B., Celis J.-P., Roos J.R. (1995) Wear 180:43

    Article  Google Scholar 

  25. Archard J.F. (1953) J. Appl. Phys. 24(8):981

    Article  Google Scholar 

  26. E. Rabinowicz, Friction and Wear of Materials (John Wiley and Sons, 1965)

Download references

Acknowledgments

This study was financially supported by the programme POCI 2010 under project POCI/SAU-BMA/55493/2004. M. Gispert and A.P. Serro acknowledge the Portuguese Foundation for Science for the research grant financed by the project and for the post-doctoral grant SFRH/BPD/5666/2001, respectively. The authors also acknowledge Dr. E. Alves and Dr. R. C. Silva from ITN and Dr. E. Pires, from CERAMED, for preparing the Cl and Ar implanted and the TiN samples, respectively, and to Poly Hi Solidur who kindly offered the UHMWPE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Colaço.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colaço, R., Gispert, M., Serro, A. et al. An energy-based model for the wear of UHMWPE. Tribol Lett 26, 119–124 (2007). https://doi.org/10.1007/s11249-006-9159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-006-9159-8

Keywords

Navigation