Advertisement

Tribology Letters

, Volume 22, Issue 1, pp 67–78 | Cite as

Viscosity–temperature correlation for liquids

  • Christopher J. Seeton
Article

A new viscosity–temperature equation and corresponding chart have been developed to extend the range of the current ASTM viscosity–temperature charts. This new chart and equation extends the temperature and viscosity range for hydrocarbons and, for the first time, has the ability to extend to the low viscosity regime of halocarbons and low temperature fluids. The new equation and chart can linearize liquid viscosity data from 0.04 cSt and covers the temperature range from −210 to 500 °C for halocarbons and hydrocarbons. With a modification to the temperature scaling, the new equation also has the ability to fit liquid metal viscosity data. The new chart and equation cannot accurately linearize the viscosity with respect to temperature of fluids exhibiting strong molecular bonding (water, ammonia), fluids whose molecular structure consists of long coils (some long chained silicones), or fluid mixtures in which one fluid precipitates out of solution (wax precipitation).

Keywords

viscosity temperature hydrocarbon halocarbon metal 

Notes

Acknowledgments

The Industrial Advisory Board of the Air Conditioning Research Center at the University of Illinois Urbana-Champaign provided funding for part of this work.

References

  1. 1.
    Reynolds O. (1886). Phil Trans Royal Soc London 177:157CrossRefGoogle Scholar
  2. 2.
    ASTM 341-93 (1998). Standard viscosity–temperature charts for liquid petroleum products. ASTM InternationalGoogle Scholar
  3. 3.
    Wright W.A. (1969). J Mater. JMLSA. 4(1):19Google Scholar
  4. 4.
    Vogel H. (1921). Physikalische Zeitschrift. 22: 645Google Scholar
  5. 5.
    G.S. Fulcher, J. Am. Ceramic Soc. 8(6) (1925) 339. Commemorative Reprint: J. Am. Ceramic Soc. 75(5) (1992) 1043Google Scholar
  6. 6.
    Walther C. (1928). Erdöl und Teer. 4: 510Google Scholar
  7. 7.
    Walther C. (1931). Erdöl und Teer. 7:382Google Scholar
  8. 8.
    Walther C. (1931). Maschinenbau. 10: 670Google Scholar
  9. 9.
    J.C. Geniesse and T.G. Delbridge, Proc. Second Mid-Year Meeting. Division of Refining, American Petroleum Institute (1932) 56–58Google Scholar
  10. 10.
    G. Barr, Proc. Gen. Discussion Lubrication Lubricants, Institution of Mechanical engineering 2 (1937) 217Google Scholar
  11. 11.
    Crouch R.F., Cameron A. (1961). J. Inst. Petroleum 47(453):307Google Scholar
  12. 12.
    C.J.A. Roelands, Correlational aspects of the viscosity–temperature–pressure relationship of lubricating oils, PhD Thesis, Delft University of Technology, Netherlands (1966)Google Scholar
  13. 13.
    Manning R.E. (1974). J. Testing Eval. 2(6):522CrossRefGoogle Scholar
  14. 14.
    Scherer G.W. (1992). J. Am. Ceramic Soc. 75(5): 1060CrossRefGoogle Scholar
  15. 15.
    Lubrication. A Technical Publication Devoted to the Selection and Use of Lubricants, A New Chart for Viscosity Temperature Relations. The Texas Company. 7(6) (1921) 5Google Scholar
  16. 16.
    International Critical Tables of Numerical Data, Physics, Chemistry and Technology, McGraw-Hill for The National Research Council. Vol. II, pp. 146–147 (1927)Google Scholar
  17. 17.
    Erk V.S., Eck H. (1936). Physikalische Zeitschrift. 37(4): 113Google Scholar
  18. 18.
    Murphy C.M., Romans J.B., Zisman W.A. (1951). Trans. Am. Soc. Mech. Eng. 71: 561Google Scholar
  19. 19.
    Lubrication. A Technical Publication Devoted to the Selection, Use of Lubricants. Viscosity—Effects of Temperature and Pressure. The Texas Company 36(6) (1950) 60Google Scholar
  20. 20.
    Stachowiak G.W., Batchelor A.W. (2005). Engineering Tribology, 3. New York, Elsevier, pp. 13–15Google Scholar
  21. 21.
    S. Blair, Proc. I MECH E, Part J. J. Eng. Tribolo. 218 (2004) 57Google Scholar
  22. 22.
    Vogel E., Küchenmeister C., Bich E., Laesecke A. (1998). J. Phys. Chem. Ref. Data 27(5): 947CrossRefGoogle Scholar
  23. 23.
    http://webbook.nist.gov. NIST Chemistry Webbook. United States Department of Commerce. March 2006Google Scholar
  24. 24.
    Grosse A.V. (1966). J. Inorg. Nucl. Chem. 28: 31CrossRefGoogle Scholar
  25. 25.
    Spells K.E. (1936). Proc. Phys. Soc. 48: 299CrossRefGoogle Scholar
  26. 26.
    Tipton C.R., ed. (1960). Reactor Handbook; Volume I, Materials. 2. New York, Interscience Publishers, Inc. pp. 996-999Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations