Skip to main content
Log in

Cryogenic Friction Behavior of PTFE based Solid Lubricant Composites

  • Published:
Tribology Letters Aims and scope Submit manuscript

Solid lubricants used in aerospace applications must provide low friction and a predictable operation life over an extreme range of temperatures, environments and contact conditions. PTFE and PTFE composites have shown favorable tribological performance as solid lubricants. This study evaluates the effect of temperature on the friction coefficient of neat PTFE, a PTFE/PEEK composite and an expanded PTFE (ePTFE)/epoxy coating. These experiments evaluate friction coefficient over a temperature span which, to the investigators’ knowledge, has not been previously examined. Results show a monotonic increase in friction coefficient as sample surface temperature was decreased from 317 to 173 K for all three samples. The frictional performance of these and other published solid lubricant polymers was modeled using an adjusted Arrhenius equation, which correlates the coefficient of friction of the polymer materials to their viscoelastic behavior. A model fit of all the polymer data from 173 to 450 K gives an activation energy of 3.7 kJ/mol. This value suggests that breaking of van der Waals bonds is the likely mechanism responsible for the frictional behavior over this temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.N. Gardos (1981) Lubric. Eng. 37 641

    Google Scholar 

  2. M.N. Gardos (1982) Tribol. Int. 15 273 Occurrence Handle10.1016/0301-679X(82)90084-6

    Article  Google Scholar 

  3. M.N. Gardos, in: Self-Lubricating Composites for Extreme Environment Conditions. Friction and Wear of Polymer Composites in the Composite Materials Series, Vol. 1., ed. K.A.P. Friedrich, R.B. (Elsevier, New York, 1986) 397.

  4. D. Dickrell D. Dooner W. Sawyer (2003) J. Tribol. Trans. ASME 125 187 Occurrence Handle10.1115/1.1504092

    Article  Google Scholar 

  5. D.J. Dickrell W.G. Sawyer (2004) Tribol. Trans. 47 257 Occurrence Handle10.1080/05698190490439175

    Article  Google Scholar 

  6. D.L. Burris and W.G. Sawyer, Wear submitted (2005)

  7. N. McCook D. Burris G. Bourne J. Steffens J. Hanrahan W. Sawyer (2005) Tribol. Lett. 18 119 Occurrence Handle10.1007/s11249-004-1766-7

    Article  Google Scholar 

  8. T.L. Merriman J.W. Kannel (1986) Asle Trans. 29 179

    Google Scholar 

  9. T.A. Blanchet F.E. Kennedy (1992) Wear 153 229 Occurrence Handle10.1016/0043-1648(92)90271-9

    Article  Google Scholar 

  10. K. Tanaka S. Kawakami (1982) Wear 79 221 Occurrence Handle10.1016/0043-1648(82)90170-3

    Article  Google Scholar 

  11. K.G. Mclaren D. Tabor (1963) Nature 197 856

    Google Scholar 

  12. T.P. Yukhno Y.V. Vvedensky L.N. Sentyurikhina (2001) Tribol. Int. 34 293 Occurrence Handle10.1016/S0301-679X(01)00013-5

    Article  Google Scholar 

  13. T. Gradt T. Schneider W. Hubner H. Borner (1998) Int. J. Hydrogen Energy 23 397 Occurrence Handle10.1016/S0360-3199(97)00070-0

    Article  Google Scholar 

  14. W. Hubner T. Gradt T. Schneider H. Borner (1998) Wear 216 150 Occurrence Handle10.1016/S0043-1648(97)00187-7

    Article  Google Scholar 

  15. P.C. Michael E. Rabinowicz Y. Iwasa (1991) Cryogenics 31 695 Occurrence Handle10.1016/0011-2275(91)90230-T

    Article  Google Scholar 

  16. G. Theiler W. Hubner T. Gradt P. Klein K. Friedrich (2002) Tribol. Int. 35 449 Occurrence Handle10.1016/S0301-679X(02)00035-X

    Article  Google Scholar 

  17. D.W. Wisander C.E. Maley R.L. Johnson (1959) Asle Trans. 2 58

    Google Scholar 

  18. K. Friedrich J. Kargerkocsis Z. Lu (1991) Wear 148 235 Occurrence Handle10.1016/0043-1648(91)90287-5

    Article  Google Scholar 

  19. Z.P. Lu K. Friedrich (1995) Wear 181 624

    Google Scholar 

  20. K.R. Makinson D. Tabor (1964) Proc. Roy. Soc. London Series a-Math. Phys. Sci. 281 49

    Google Scholar 

  21. Y.M. Pleskachevsky V.A. Smurugov (1997) Wear 209 123 Occurrence Handle10.1016/S0043-1648(97)00034-3

    Article  Google Scholar 

  22. C.J. Speerschneider C.H. Li (1963) J. Appl. Phys. 34 3004 Occurrence Handle10.1063/1.1729110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Sawyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCook, N.L., Burris, D.L., Dickrell, P.L. et al. Cryogenic Friction Behavior of PTFE based Solid Lubricant Composites. Tribol Lett 20, 109–113 (2005). https://doi.org/10.1007/s11249-005-8300-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-005-8300-4

Keywords

Navigation