Skip to main content
Log in

The Adhesion of Monomolecular Hydroxyl-terminated Perfluoropolyether Liquid Films on the Sputtered Silicon Nitride Surface as a Function of End Group Acidity and Mobility

  • Published:
Tribology Letters Aims and scope Submit manuscript

The intermolecular interactions at the interface between monomolecular hydroxyl-terminated perfluoropolyether (PFPE) liquids (Zdol, Zdol-TX, Z-Tetraol, Zdiac) and a sputtered amorphous silicon nitride film (SiN x ) are investigated using contact angle goniometry, Fourier transform infrared spectroscopy, and ab initio computational chemistry. The results demonstrate that the adhesion between the PFPE liquids and the SiN x surface occur via the polar interactions between the PFPE end groups (-OH, -COOH) and the polar sites on the SiN x surface (e.g., SiOH). The attractive interactions lead to a lowering of the polar surface energy with increasing PFPE coverage up to a monolayer. The binding energy is computed to be approximately −4 to −9 kcal/mol, depending upon the polarity of the PFPE end group. Adsorbed water is shown to compete with PFPE for surface bonding sites on SiN x (−4.4 kcal/mol) that can lead to a significantly reduced level of adhesion for some of the hydroxyl-terminated PFPEs. A higher level of adhesion between the PFPEs and SiN x can be attained by increasing the strength of the hydrogen bond and/or increasing the configurational entropy of the PFPE end group to facilitate the hydrogen bonding reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Weiler S. Sattel T. Giessen K. Jung H. Ehrhardt V.S. Veerasamy J. Robertson (1996) Phys. Rev. B 53 1594 Occurrence Handle10.1103/PhysRevB.53.1594

    Article  Google Scholar 

  2. S.A. Pirzada J.J. Liu Z.F. Li J. Liu D.W. Park C.-Y. Chen (2002) IEEE Trans. Mag. 38 2117 Occurrence Handle10.1109/TMAG.2002.802836

    Article  Google Scholar 

  3. M.M. Yang D. Spaulding J.L. Chao M.A. Russak (2000) IEEE Trans. Mag. 36 2702 Occurrence Handle10.1109/20.908564

    Article  Google Scholar 

  4. G.-L. J. Chen Wu J. Weiss (1999) IEEE Trans. Mag. 35 2364 Occurrence Handle10.1109/20.800826

    Article  Google Scholar 

  5. J. Wen X. Ying K. Wong G. Barth (1999) IEEE Trans. Mag. 35 2358 Occurrence Handle10.1109/20.800824

    Article  Google Scholar 

  6. R.-H. Wang R.L. White S.W. Meeks B.G. Min A. Kellock A. Homola D. Yoon (1996) IEEE Trans. Mag. 32 3777 Occurrence Handle10.1109/20.538833

    Article  Google Scholar 

  7. T.E. Karis G.W. Tyndall R.J. Waltman (2001) Tribol. Trans. 44 249

    Google Scholar 

  8. B.K. Yen R.L. White R.J. Waltman C.M. Mate Y. Sonobe B.J. Marchon (2003) Appl. Phys. 93 8704 Occurrence Handle10.1063/1.1543136

    Article  Google Scholar 

  9. R.J. Waltman B.K. Yen R.L. White D.J. Pocker G.W. Tyndall (2004) Chem. Mater. 16 4878 Occurrence Handle10.1021/cm030065b

    Article  Google Scholar 

  10. R.J. Waltman H. Zhang A. Khurshudov D.J. Pocker M. Karplus B. York Q.-F. Xiao H. Zadoori J.-U. Thiele G.W. Tyndall (2002) Tribol. Lett. 12 51 Occurrence Handle10.1023/A:1013975522389

    Article  Google Scholar 

  11. G.W. Tyndall R.J. Waltman (1998) Proc. Mater. Res. Soc. 517 408

    Google Scholar 

  12. A.W. Adamson (1990) Physical Chemistry of Surfaces EditionNumber5 John Wiley and Sons New York

    Google Scholar 

  13. (a) D.K. Owens and R.D. Wendt, J. Appl. Polym. Sci. 13 (1969) 741. (b) D.H. Kaelbe, J. Adhes. 2 (1970) 66

  14. M.F. Toney C.M. Mate D.J. Pocker (1998) IEEE Trans. Mag. 34 1774 Occurrence Handle10.1109/20.706702

    Article  Google Scholar 

  15. Gaussian 98, Revision A.7: Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Zakrzewski, V.G.; Montgomery, Jr., J.A.; Stratmann, R.E.; Burant, J.C.; Dapprich, S.; Millam, J.M.; Daniels, A.D.; Kudin, K.N.; Strain, M.C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.A.; Ayala, P.Y.; Cui, Q.; Morokuma, K.; Malick, D.K.; Rabuck, A,D.; Raghavachari, K.; Foresman, J.B.; Cioslowski, J.; Ortiz, J.V.; Baboul, A.G.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Andres, J.L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E.S.; Pople, J.A.; Gaussian, Inc., Pittsburgh PA, USA

  16. A.D. McLean G.S. Chandler (1980) J. Chem. Phys. 72 5639 Occurrence Handle10.1063/1.438980

    Article  Google Scholar 

  17. A.D. Becke (1996) J. Chem. Phys. 104 1040 Occurrence Handle10.1063/1.470829

    Article  Google Scholar 

  18. J.P. Perdew K. Burke Y. Wang (1996) Phys. Rev. B54 16533

    Google Scholar 

  19. C.M. Breneman K.B. Wiberg (1990) J. Comp. Chem. 11 361 Occurrence Handle10.1002/jcc.540110311

    Article  Google Scholar 

  20. GaussView 2.1, Gaussian, Inc., Pittsburgh PA

  21. CambridgeSoft Chem 3D Ultra, Version 4.0, Cambridge, MA, USA

  22. J.N. Israelachvili (1985) Intermolecular and Surface Forces with Applications to Colloidal and Biological Systems Academic Press London

    Google Scholar 

  23. F. Brochard-Wyart J.-M. Meglio Particledi D. Quere P.-G. deGennes (1991) Langmuir 7 335 Occurrence Handle10.1021/la00050a023

    Article  Google Scholar 

  24. P.-G. Gennes Particlede (1985) Rev. Mod. Phys. 3 837

    Google Scholar 

  25. R.J. Waltman G.W. Tyndall J. Pacansky (1999) Langmuir 15 6470 Occurrence Handle10.1021/la990005d

    Article  Google Scholar 

  26. R.J. Waltman A. Khurshudov G.W. Tyndall (2002) Tribol. Lett. 12 163 Occurrence Handle10.1023/A:1014707207255

    Article  Google Scholar 

  27. G.W. Tyndall R.J. Waltman (1998) Proc. Mater. Res. Soc. 517 408

    Google Scholar 

  28. R.J. Waltman (2004) J. Fluor. Chem. 125 391 Occurrence Handle10.1016/j.jfluchem.2003.10.011

    Article  Google Scholar 

  29. G.W. Tyndall R.J. Waltman J. Pacansky (2001) J. Appl. Phys. 90 6287 Occurrence Handle10.1063/1.1413946

    Article  Google Scholar 

  30. R.J. Waltman (2002) Chem. Mater 12 2039 Occurrence Handle10.1021/cm0001410

    Article  Google Scholar 

  31. R.J. Waltman G.W. Tyndall J. Pacansky R.J. Berry (1999) Tribol. Lett. 7 91 Occurrence Handle10.1023/A:1019181606355

    Article  Google Scholar 

  32. R.J. Waltman M.G. Shieh (2001) Macromolecules 34 6776 Occurrence Handle10.1021/ma001418k

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Waltman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waltman, R.J., Yen, B.K. & White, R.L. The Adhesion of Monomolecular Hydroxyl-terminated Perfluoropolyether Liquid Films on the Sputtered Silicon Nitride Surface as a Function of End Group Acidity and Mobility. Tribol Lett 20, 69–81 (2005). https://doi.org/10.1007/s11249-005-7794-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-005-7794-0

Key Words

Navigation