Skip to main content
Log in

Wear analysis of Cu–Al coating on Ti–6Al–4V substrate under fretting condition

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Fretting behavior of Cu–Al coating on Ti–6Al–4V substrate was investigated with and without fatigue load. Soft and rough Cu–Al coating resulted in abrasive wear and a large amount of debris remained at the contact surface, which caused an increase in tangential force during the fretting test under gross slip condition. Fretting in the partial slip condition also showed the wear of coating. To characterize wear, dissipated energies during fretting were calculated from fretting loops and wear volumes were obtained from worn surface profiles. Energy approach of wear analysis showed a linear relationship between wear volume and accumulated dissipated energy. This relationship was independent of fatigue loading condition and extended from partial slip to gross slip regimes. As an alternate but simple approach for wear analysis, accumulated relative displacement range was correlated with the wear volume. This also resulted in a linear relationship as in the case of accumulated dissipated energy suggesting that the accumulated relative displacement range can be used as an alternative parameter for dissipated energy to characterize the wear. When the maximum wear depth was equal to the thickness of Cu–Al coating, harder Ti–6Al–4V substrate inhibited further increase in wear depth. Only when a considerable energy was supplied through a large value of the applied displacement, wear in the substrate material could occur beyond the thickness of coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Fouvry Ph. Kapsa L. Vincent (1996) Wear 200 186 Occurrence Handle10.1016/S0043-1648(96)07306-1

    Article  Google Scholar 

  2. K. Schouterden B. Blanpain J.P. Celis O. Vingsbo (1995) Wear 86 181

    Google Scholar 

  3. T. Liskiwwicz S. Fouvry B. Wendler (2003) Surf. Coat. Technol 465 163

    Google Scholar 

  4. M.A. Sherbiney J. Halling (1977) Wear 45 211 Occurrence Handle10.1016/0043-1648(77)90075-8

    Article  Google Scholar 

  5. S. Jahanmir E.P. Abrahamson N.P. Suh (1976) Wear 40 75 Occurrence Handle10.1016/0043-1648(76)90019-3

    Article  Google Scholar 

  6. W. Ren, S. Mall, J.H. Sanders and S.K. Sharma, in: Proc. of the 6th National Turbine Engine High Cycle Fatigue (HCF) Conference, 2001

  7. W. Ren S. Mall J.H. Sanders S.K. Sharma (2003) Tribol. Trans 46 353

    Google Scholar 

  8. W. Ren S. Mall J.H. Sanders S.K. Sharma (2005) Surf. Coat. Tech 192 177 Occurrence Handle10.1016/j.surfcoat.2004.07.084

    Article  Google Scholar 

  9. O. Jin, S. Mall, J.H. Sanders and S.K. Sharma, Tribol. Trans., submitted for publication

  10. S. Fouvry Ph. Kapsa (2001) Surf. Coat. Technol 138 141 Occurrence Handle10.1016/S0257-8972(00)01161-0

    Article  Google Scholar 

  11. S. Fouvry Ph. Kapsa L. Vincent (2001) Wear 247 41 Occurrence Handle10.1016/S0043-1648(00)00508-1

    Article  Google Scholar 

  12. S. Fouvry T. Liskiewicz Ph. Kapsa S. Hannel E. Sauger (2003) Wear 255 287 Occurrence Handle10.1016/S0043-1648(03)00117-0

    Article  Google Scholar 

  13. B.U. Wittkowsky P.R. Birch J. Dominguez S. Suresh (1999) Fatigue Fract. Eng. Mater 22 307 Occurrence Handle10.1046/j.1460-2695.1999.00145.x

    Article  Google Scholar 

  14. O. Jin S. Mall (2002) Wear 253 585 Occurrence Handle10.1016/S0043-1648(02)00061-3

    Article  Google Scholar 

  15. J. Warburton (1989) Wear 131 385 Occurrence Handle10.1016/0043-1648(89)90176-2

    Article  Google Scholar 

  16. A. Iwabuchi (1991) Wear 151 301 Occurrence Handle10.1016/0043-1648(91)90257-U

    Article  Google Scholar 

  17. A. Iwabuchi H. Kurosawa K. Hori (1990) Wear 139 319 Occurrence Handle10.1016/0043-1648(90)90054-E

    Article  Google Scholar 

  18. Y. Fu J. Wei A.W. Batchelor (2000) J. Mater. Proc. Technol 99 231 Occurrence Handle10.1016/S0924-0136(99)00429-X

    Article  Google Scholar 

  19. V.P. Bulatov V.A. Krasny Y.G. Schneider (1997) Wear 208 132 Occurrence Handle10.1016/S0043-1648(96)07403-0

    Article  Google Scholar 

  20. E. Rabinowicz (1995) Friction and Wear of Materials John Wiley & Sons Inc New York

    Google Scholar 

  21. R. B. Waterhouse (1972) Fretting Corrosion Pergamon Press Oxford

    Google Scholar 

  22. M. Varenberg G. Halperin I. Etsion (2002) Wear 252 902 Occurrence Handle10.1016/S0043-1648(02)00044-3

    Article  Google Scholar 

  23. E. Sauger S. Fouvry L. Ponsonnet Ph. Kapsa J.M. Martin L. Vincent (2000) Wear 245 39 Occurrence Handle10.1016/S0043-1648(00)00464-6

    Article  Google Scholar 

  24. O. Jin S. Mall (2002) Int. J. Fatigue 24 1243 Occurrence Handle10.1016/S0142-1123(02)00041-5

    Article  Google Scholar 

  25. O. Jin S. Mall (2004) Wear 256 671 Occurrence Handle10.1016/S0043-1648(03)00510-6

    Article  Google Scholar 

  26. J.F. Archard (1953) J. Appl. Phys 24 981 Occurrence Handle10.1063/1.1721448

    Article  Google Scholar 

  27. H. Lee S. Mall (2004) Tribol. Lett 17 491 Occurrence Handle10.1023/B:TRIL.0000044496.85398.76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Mall, S., Sanders, J. et al. Wear analysis of Cu–Al coating on Ti–6Al–4V substrate under fretting condition. Tribol Lett 19, 239–248 (2005). https://doi.org/10.1007/s11249-005-6151-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-005-6151-7

Keywords

Navigation