Skip to main content
Log in

On the stiction of MEMS materials

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Stiction is a serious problem in microelectromechanical systems (MEMS) due to their large surface area-to-volume ratio. Stiction is closely related to surface forces, which greatly depend on the materials used, surface topography and surface treatment process. In this paper, we investigate surface energies and stiction of commonly used MEMS materials by contact angle measurements and atomic force microscopy (AFM). Dispersive and polar components of surface energies are calculated by Owens–Wendt–Rabel–Kaelble method. Silicon and silicon-related materials have higher polar surface energies than SU-8 and poly-methylmethacrylate (PMMA), thereby have larger surface energies and enhanced tendency for stiction. The nano-scale adhesion forces between Si3N4 tip and surfaces obtained by AFM further verified that silicon wafer with native oxide has 3–4 times higher adhesion force than SU-8 and PMMA. It has been shown that the materials with higher surface energy have higher sticton/adhesion forces. The topography of surface influences the contact angle and stiction, and is also discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tai-Ran Hus, MEMS & Microsystems: Design and Manufacture (McGraw-Hill Companies, Inc., New York, 2002)

  2. R. Ruhmann K. Pfeiffer M. Falenski F. Reuther R. Engelke G. Grutzner (2002) Mstnews 1 45

    Google Scholar 

  3. K. Komvopoulos (2003) J. Adhesion Sci. Technol. 17 477 Occurrence Handle10.1163/15685610360554384 Occurrence Handle1:CAS:528:DC%2BD3sXjt1Srsbc%3D

    Article  CAS  Google Scholar 

  4. R. Maboudian R.T. Howe (1997) J. Vac. Sci. Technol. B 15 1

    Google Scholar 

  5. A.W. Adamson A.P. Gast (1997) Physical Chemistry of Surfaces EditionNumber6 John Wiley & Sons, Inc New York

    Google Scholar 

  6. D.K. Owens R.C. Wendt (1969) J. Appl. Polym. Sci. 13 1741 Occurrence Handle10.1002/app.1969.070130815 Occurrence Handle1:CAS:528:DyaF1MXltFegtLc%3D

    Article  CAS  Google Scholar 

  7. D.H. Kaelble K.C. Uy (1970) J. Adhes. 2 50 Occurrence Handle1:CAS:528:DyaE3cXktVCgsr0%3D

    CAS  Google Scholar 

  8. W. Rabel (1971) Farbe Lack 77 IssueID10 997 Occurrence Handle1:CAS:528:DyaE38XisFOhtA%3D%3D

    CAS  Google Scholar 

  9. SU-8 2005 from MicroChem Corp

  10. Krüss GmBH DSA I software database

  11. B. Bhushan (1999) Handbook of Micro/Nanotribology EditionNumber2 Chemical Rebber Corp Boca Raton, FL

    Google Scholar 

  12. R. Juan B. Bhushan (1994) ASME J. Trobol. 116 378

    Google Scholar 

  13. Y.X. Zhuang and A. Menon, J. Vac. Sci. Technol. A 23 (2005) 434

    Google Scholar 

  14. A.A. Ayon D.-Z. Chen R. Khanna R. Braff H.H. Sawin M.A. Schmidt (2000) Mat. Res. Sco. Symp. Proc. 605 141 Occurrence Handle1:CAS:528:DC%2BD3cXnsVSmsrw%3D

    CAS  Google Scholar 

  15. R.N. Wenzel (1936) Ind. Eng. Chem. 28 988 Occurrence Handle10.1021/ie50320a024 Occurrence Handle1:CAS:528:DyaA28Xkslentg%3D%3D

    Article  CAS  Google Scholar 

  16. A.B. Cassie S. Baxter (1944) Trans. Faraday Soc. 40 546 Occurrence Handle10.1039/tf9444000546 Occurrence Handle1:CAS:528:DyaH2MXhsFKqsA%3D%3D

    Article  CAS  Google Scholar 

  17. K. Komvopoulos (1996) Wear 200 305 Occurrence Handle10.1016/S0043-1648(96)07328-0 Occurrence Handle1:CAS:528:DyaK2sXhslOhsw%3D%3D

    Article  CAS  Google Scholar 

  18. R.K. Alley, P. Mai, K. Komvopoulos and R.T. Howe, Proceedings of the Seventh International Conference on Solid-state Sensors and Actuators, Transducer’93, Yokohama, Japan, Vol. 288, pp. 7--10

  19. S. Ren S. Yang Y. Zhao T. Yu X. Xiao (2003) Surf. Sci. 546 64 Occurrence Handle10.1016/j.susc.2003.09.018 Occurrence Handle1:CAS:528:DC%2BD3sXoslyqsro%3D

    Article  CAS  Google Scholar 

  20. E.S. Yoon S.H. Yang H. Kong K.H. Kim (2003) Tribol. Lett. 13 145 Occurrence Handle10.1023/A:1024409316644

    Article  Google Scholar 

  21. S. Shibuichi T. Onda N. Satoh K. Tsujii (1996) J. Phys. Chem. 100 19512 Occurrence Handle10.1021/jp9616728 Occurrence Handle1:CAS:528:DyaK28XntVWnsbs%3D

    Article  CAS  Google Scholar 

  22. J. Bico C. Marzoln D. Quéré (1999) Europhys. Lett. 47 220 Occurrence Handle10.1209/epl/i1999-00548-y Occurrence Handle1:CAS:528:DyaK1MXltVektLc%3D

    Article  CAS  Google Scholar 

  23. D. Nilsson S. Jensen A. Menon (2003) J. Micromech. Microeng. 13 S57 Occurrence Handle10.1088/0960-1317/13/4/309 Occurrence Handle1:CAS:528:DC%2BD3sXpt1Sju78%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Menon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, Y., Menon, A. On the stiction of MEMS materials. Tribol Lett 19, 111–117 (2005). https://doi.org/10.1007/s11249-005-5088-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-005-5088-1

Key words

Navigation