Skip to main content

Advertisement

Log in

Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Silicon micromachines in microelectromechanical systems (MEMS) are coated with self-assembled monolayers (SAMs) in order to reduce the wear and stiction that are commonplace during operation. Recently, perfluorinated SAMs have been the focus of attention because they have better processing properties than hydrocarbon SAMs. In this study, we perform molecular dynamics simulations that model adhesive contact and friction for perfluorinated alkylsilane (Si(OH)3(CF2)10CF3) self-assembled monolayers (SAMs), which are commonly used in MEMS devices. Amorphous silica is used as the substrate for the SAMs in the simulations. The frictional behavior is investigated as a function of applied pressure (50 MPa–1 GPa) for a shear velocity of 2 m/s and compared to recent simulation results of hydrocarbon alkylsilane SAMs. The microscopic friction coefficient for the perfluorinated SAMs is the same as was measured for the hydrocarbon SAMs, but the shear stress is slightly larger than in the case of the hydrocarbon SAMs on amorphous silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Ulman (1996) Chem. Rev. 96 1533 Occurrence Handle10.1021/cr9502357 Occurrence Handle1:CAS:528:DyaK28Xjt1Kntr4%3D Occurrence Handle11848802

    Article  CAS  PubMed  Google Scholar 

  2. U. Srinivasan M.R. Houston R.T. Howe R. Maboudian (1998) J. Microelectromech. Systems 7 252 Occurrence Handle10.1109/84.679393 Occurrence Handle1:CAS:528:DyaK1cXjvFSmsLg%3D

    Article  CAS  Google Scholar 

  3. R. Maboudian W.R. Ashurst C. Carraro (2002) Tribol. Lett. 12 95 Occurrence Handle10.1023/A:1014044207344

    Article  Google Scholar 

  4. C.A. Alves M.D. Porter (1993) Langmuir 9 3507 Occurrence Handle10.1021/la00036a027 Occurrence Handle1:CAS:528:DyaK3sXmsl2lsrc%3D

    Article  CAS  Google Scholar 

  5. G. Liu P. Fenter C.E.D. Chidsey D.F. Ogletree P. Eisenberger M. Salmeron (1994) J. Chem. Phys 101 4301 Occurrence Handle10.1063/1.467479 Occurrence Handle1:CAS:528:DyaK2MXls1CisA%3D%3D

    Article  CAS  Google Scholar 

  6. H. Schonherr G.J. Vancso (1997) Langmuir 13 3769 Occurrence Handle10.1021/la960561x

    Article  Google Scholar 

  7. H. Schonherr G.J. Vancso (1999) Mater. Sci. Eng. 8–9 243

    Google Scholar 

  8. H. Fukushima S. Seki T. Nishikawa H. Takiguchi K. Tamada K. Abe R. Colorado SuffixJr. M. Graupe O.E. Shmakova T.R. Lee (2000) J. Phys. Chem. B 104 7417 Occurrence Handle10.1021/jp0003499 Occurrence Handle1:CAS:528:DC%2BD3cXkvVWgt7k%3D

    Article  CAS  Google Scholar 

  9. K. Tamada T. Ishida W. Knoll H. Fukushima R. Colorado SuffixJr. M. Graupe O.E. Shmakova T.R. Lee (2001) Langmuir 17 1913 Occurrence Handle10.1021/la001212c Occurrence Handle1:CAS:528:DC%2BD3MXht1Ckt78%3D

    Article  CAS  Google Scholar 

  10. R. Colorado SuffixJr. T.R. Lee (2003) Langmuir 19 3288 Occurrence Handle10.1021/la0263763 Occurrence Handle1:CAS:528:DC%2BD3sXit1Sjtr8%3D

    Article  CAS  Google Scholar 

  11. M.J. Pellerite E.J. Wood V.W. Jones (2002) J. Phys. Chem. B 106 4746 Occurrence Handle10.1021/jp013820m Occurrence Handle1:CAS:528:DC%2BD38XisF2ntrw%3D

    Article  CAS  Google Scholar 

  12. P. Cléchet C. Martelet M. Belin H. Zarrad N. Jaffrezic-Renault S. Fayeulle (1994) Sens. Actuators A 44 77 Occurrence Handle10.1016/0924-4247(94)00777-2

    Article  Google Scholar 

  13. U. Srinivasan, J.D. Foster, U. Habib, R.T. Howe, R. Maboudian, D.C. Senft, M.T. Dugger, Solid-State Sensor and Actuator Workshop: Technical digest: (1998) 156

  14. V. DePalma N. Tillman (1989) Langmuir 5 868 Occurrence Handle10.1021/la00087a049 Occurrence Handle1:CAS:528:DyaL1MXitF2ls7c%3D

    Article  CAS  Google Scholar 

  15. B.-I. Kim, T.M. Mayer, M.G. Hankins, M.P. de Boer and B.C. Bunker, American Vacuum Society 50th International Symposium (2003)

  16. T.M. Mayer M.P. Boer Particlede N.D. Shinn P.J. Clews T.A. Michalske (2000) J. Vac. Sci. Technol. B 18 2453

    Google Scholar 

  17. C.E.D. Chidsey D.N. Loiacono (1990) Langmuir 6 682 Occurrence Handle10.1021/la00093a026 Occurrence Handle1:CAS:528:DyaK3cXhsVKht7o%3D

    Article  CAS  Google Scholar 

  18. J.N. Glosli G.M. McClelland (1993) Phys. Rev. Lett 70 1960 Occurrence Handle10.1103/PhysRevLett.70.1960 Occurrence Handle1:CAS:528:DyaK3sXit1Smsbk%3D Occurrence Handle10053430

    Article  CAS  PubMed  Google Scholar 

  19. K.J. Tupper D.W. Brenner (1994) Thin Solid Films 253 185 Occurrence Handle10.1016/0040-6090(94)90317-4 Occurrence Handle1:CAS:528:DyaK2MXisFertL4%3D

    Article  CAS  Google Scholar 

  20. T. Ohzono J.N. Glosli M. Fujihira (1998) Jpn. J. Appl. Phys 37 6535 Occurrence Handle10.1143/JJAP.37.6535 Occurrence Handle1:CAS:528:DyaK1MXksVehtg%3D%3D

    Article  CAS  Google Scholar 

  21. M. Chandross G.S. Grest M.J. Stevens (2002) Langmuir 18 8392 Occurrence Handle10.1021/la025598y Occurrence Handle1:CAS:528:DC%2BD38XnsVKmtrs%3D

    Article  CAS  Google Scholar 

  22. K.J. Tupper R.J. Colton D.W. Brenner (1994) Langmuir 10 2041 Occurrence Handle10.1021/la00019a002 Occurrence Handle1:CAS:528:DyaK2cXks1KmtLo%3D

    Article  CAS  Google Scholar 

  23. T. Ohzono M. Fujihira (2000) Tribol. Lett. 9 63 Occurrence Handle10.1023/A:1018804410641 Occurrence Handle1:CAS:528:DC%2BD3MXjs1ejs70%3D

    Article  CAS  Google Scholar 

  24. A.B. Tutein S.J. Stuart J.A. Harrison (2000) Langmuir 16 291 Occurrence Handle10.1021/la991225u Occurrence Handle1:CAS:528:DyaK1MXnvVKjtbw%3D

    Article  CAS  Google Scholar 

  25. P.T. Mikulski J.A. Harrison (2001) Tribol. Lett 10 29 Occurrence Handle10.1023/A:1009066026845 Occurrence Handle1:CAS:528:DC%2BD3MXkt1Sju78%3D

    Article  CAS  Google Scholar 

  26. P.T. Mikulski J.A. Harrison (2001) J. Am. Chem. Soc 123 6873 Occurrence Handle10.1021/ja010189u Occurrence Handle1:CAS:528:DC%2BD3MXksVKlt7o%3D

    Article  CAS  Google Scholar 

  27. B. Park M. Chandross M.J. Stevens G.S. Grest (2003) Langmuir 19 9239 Occurrence Handle10.1021/la0341106 Occurrence Handle1:CAS:528:DC%2BD3sXns1GgtbY%3D

    Article  CAS  Google Scholar 

  28. L. Zhang Y. Leng S. Jiang (2003) Langmuir 19 9742 Occurrence Handle10.1021/la034007g Occurrence Handle1:CAS:528:DC%2BD3sXnvV2ntb4%3D

    Article  CAS  Google Scholar 

  29. T. Ohzono J.N. Glosli M. Fujihira (1999) Jpn. J. Appl. Phys 38 L675 Occurrence Handle10.1143/JJAP.38.L675 Occurrence Handle1:CAS:528:DyaK1MXkt1eqs7o%3D

    Article  CAS  Google Scholar 

  30. B. Park, C.D. Lorenz, M. Chandross, M.J. Stevens, G.S. Grest and O.A. Borodin, Langmuir 20 (2004) 10007

  31. M. Chandross, E.B. Webb III, M.J. Stevens, G.S. Grest and S.H. Garofalini, Phys. Rev. Lett. 93 (2004) 166103

  32. R.C. Major H.I. Kim J.E. Houston X.Y. Zhu (2003) Tribol. Lett 14 237 Occurrence Handle10.1023/A:1022628700342 Occurrence Handle1:CAS:528:DC%2BD3sXhsF2hu78%3D

    Article  CAS  Google Scholar 

  33. D. Litton S.H. Garofalini (2001) J. Appl. Phys 89 6013 Occurrence Handle10.1063/1.1351538 Occurrence Handle1:CAS:528:DC%2BD3MXkt1Wrtb8%3D

    Article  CAS  Google Scholar 

  34. B. Feuston S.H. Garofalini (1989) J. Chem. Phys 91 564 Occurrence Handle10.1063/1.457440 Occurrence Handle1:CAS:528:DyaL1MXls1Wjsb8%3D

    Article  CAS  Google Scholar 

  35. K. Kremer G.S. Grest (1990) J. Chem. Phys 92 5057 Occurrence Handle10.1063/1.458541 Occurrence Handle1:CAS:528:DyaK3cXitlKit74%3D

    Article  CAS  Google Scholar 

  36. M.J. Stevens (1999) Langmuir 15 2773 Occurrence Handle10.1021/la981064e Occurrence Handle1:CAS:528:DyaK1MXhvVeisbo%3D

    Article  CAS  Google Scholar 

  37. S. Plimpton (1995) J. Comp. Phys 117 1 Occurrence Handle10.1006/jcph.1995.1039 Occurrence Handle1:CAS:528:DyaK2MXlt1ejs7Y%3D

    Article  CAS  Google Scholar 

  38. S.J. Plimpton, R. Pollock and M. Stevens, in: Proc of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, eds. M. Heath (SIAM, Philadelphia, 1997), 8–21

  39. P.S. Crozier R.L. Rowley D. Henderson (2001) J. Chem. Phys 114 7513 Occurrence Handle10.1063/1.1362290 Occurrence Handle1:CAS:528:DC%2BD3MXivFWiu7w%3D

    Article  CAS  Google Scholar 

  40. R. Brightwell L.A. Fisk D.S. Greenberg T. Hudson M. Levenhagen A.B. Maccabe R. Riesen (2000) Parallel Comput 26 243 Occurrence Handle10.1016/S0167-8191(99)00104-0

    Article  Google Scholar 

  41. W.L. Jorgensen D.S. Maxwell J. Tirado-Rives (1996) J. Am. Chem. Soc. 118 11225 Occurrence Handle10.1021/ja9621760 Occurrence Handle1:CAS:528:DyaK28XmtlOitrs%3D

    Article  CAS  Google Scholar 

  42. E.K. Watkins W.L. Jorgensen (2001) J. Phys. Chem. A 105 4118 Occurrence Handle1:CAS:528:DC%2BD3MXitFGls70%3D

    CAS  Google Scholar 

  43. W.L. Jorgensen, private communication (2003)

  44. H. Sun (1995) Macromolecules 28 701 Occurrence Handle10.1021/ma00107a006 Occurrence Handle1:CAS:528:DyaK2MXjtFSjt78%3D

    Article  CAS  Google Scholar 

  45. H. Sun D. Rigby (1997) Spectrochim. Acta A 53 1301

    Google Scholar 

  46. J. Krim (1995) Comments on Condensed Matter Physics 17 263 Occurrence Handle1:CAS:528:DyaK28XitVenuw%3D%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.D. Lorenz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenz, C., Webb, E., Stevens, M. et al. Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2. Tribol Lett 19, 93–98 (2005). https://doi.org/10.1007/s11249-005-5085-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-005-5085-4

Keywords

Navigation