Skip to main content

Purslane (Portulaca oleracea L.) as a novel green-bioreactor for expression of human serum albumin (HSA) gene

Abstract

Transgenic plants showed high potential to become a valuable and safe source of bio-compounds that can be used as therapeutics without any require for pooled human blood products. Human serum albumin (HSA) is one of the best-selling pharmaceuticals in the world because it is utilized for treating several acute illnesses, including hypovolemia, burns, and hemorrhage. This work was aimed to investigate the production of recombinant HSA (rHSA) protein in a plant-based expression platform. For this, we used in-planta and tissue culture-based Agrobacterium-mediated transformation (TCBAT) procedures to insert HSA gene into purslane (Portulaca oleracea L.) genome. The purslane seeds and leaves were infected with A. tumefaciens strain LBA4404 containing the HSA gene on pBI121 plasmid, and then regenerated into transgenic plant on MS medium. The qRT-PCR, southern hybridization, western blotting, and ELISA analysis were accomplished to corroborate the insertion and expression of HSA gene in transgenic plantlets. The molecular asses indicated that HSA gene was successfully transferred and expressed in purslane plants using in-planta and TCBAT methods. The first attempt to express rHSA in purslane resulted in a low-level accumulation of the protein in the transgenic plant shoots. Therefore, we used a synthetic 5′UTR (synJ) to enhance HSA transcript stability and translation efficiency. The results suggested that the synJ caused pronounced enhancement of rHSA expression rate. The highest amount of rHSA protein was recorded in transgenic purslane generated by TCBAT method (33.92 ± 4.31 µg/g FW).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2012) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30(3):524–540

    CAS  PubMed  Article  Google Scholar 

  • Alam MA, Juraimi AS, Rafii MY, Hamid AA, Uddin MK, Alam MZ, Latif MA (2014) Genetic improvement of Purslane (Portulaca oleracea L.) and its future prospects. Mol Biol Rep 41(11):7395–7411

    PubMed  Article  CAS  Google Scholar 

  • Amal TC, Karthika P, Dhandapani G, Selvakumar S, Vasanth K (2020) A simple and efficient Agrobacterium-mediated in planta transformation protocol for horse gram (Macrotyloma uniflorum Lam. Verdc.). J Genet Eng Biotechnol 18:1–9

    Article  Google Scholar 

  • Barbosa S, Taboada P, Mosquera V (2014) Fibrillation and polymorphism of human serum albumin. In: Bio-nanoimaging (pp 345–362). Academic Press

  • Biłas R, Szafran K, Hnatuszko-Konka K, Kononowicz AK (2016) Cis-regulatory elements used to control gene expression in plants. Plant Cell Tiss Org 2:269–287

    Article  CAS  Google Scholar 

  • Boehm R (2007) Bioproduction of therapeutic proteins in the 21st century and the role of plants and plant cells as production platforms. Ann NY Acad Sci 1102(1):121–134

    CAS  PubMed  Article  Google Scholar 

  • Cervera M, Pina JA, Juárez J, Navarro L, Pena L (2000) A broad exploration of a transgenic population of citrus: stability of gene expression and phenotype. Theor Appl Genet 100(5):670–677

    CAS  Article  Google Scholar 

  • Chen Z, He Y, Shi B, Yang D (2013) Human serum albumin from recombinant DNA technology: challenges and strategies. Biochim Biophys Acta Gen Subj 1830(12):5515–5525

    CAS  Article  Google Scholar 

  • de Oliveira MLP, Febres VJ, Costa MGC, Moore GA, Otoni WC (2009) High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Rep 28(3):387–395

    CAS  PubMed  Article  Google Scholar 

  • Egelkrout E, Rajan V, Howard JA (2012) Overproduction of recombinant proteins in plants. Plant Sci 184:83–101

    CAS  PubMed  Article  Google Scholar 

  • Fahad S, Khan FA, Pandupuspitasari NS, Ahmed MM, Liao YC, Waheed MT, Sameeullah M, Hussain S, Saud S, Hassan S, Jan A (2015) Recent developments in therapeutic protein expression technologies in plants. Biotechnol Lett 37(2):265–279

    CAS  PubMed  Article  Google Scholar 

  • Fanali G, Di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P (2012) Human serum albumin: from bench to bedside. Mol Aspects Med 33(3):209–290

    CAS  PubMed  Article  Google Scholar 

  • Farran I, Sánchez-Serrano JJ, Medina JF, Prieto J, Mingo-Castel AM (2002) Targeted expression of human serum albumin to potato tubers. Transgenic Res 11:337–346

    CAS  PubMed  Article  Google Scholar 

  • Farran I, Río-Manterola F, Íñiguez M, Gárate S, Prieto J, Mingo-Castel AM (2008) High-density seedling expression system for the production of bioactive human cardiotrophin-1, a potential therapeutic cytokine, in transgenic tobacco chloroplasts. Plant Biotechnol J 6:516–527

    CAS  PubMed  Article  Google Scholar 

  • Fernández-San Millán A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1(2):71–79

    PubMed  Article  Google Scholar 

  • Habibi P, Prado GS, Pelegrini PB, Hefferon KL, Soccol CR, Grossi-de-Sa MF (2017) Optimization of inside and outside factors to improve recombinant protein yield in plant. Plant Cell Tiss Org Cult 130(3):449–467

    CAS  Article  Google Scholar 

  • He Y, Ning T, Xie T, Qiu Q, Zhang L, Sun Y, Jiang D, Fu K, Yin F, Zhang W, Shen L (2011) Large-scale production of functional human serum albumin from transgenic rice seeds. Proc Natl Acad Sci USA 108(47):19078–19083

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hefferon K (2013) Plant-derived pharmaceuticals for the developing world. Biotechnol J 8(10):1193–1202

    CAS  PubMed  Google Scholar 

  • Hoshida H, Kondo M, Kobayashi T, Yarimizu T, Akada R (2017) 5-UTR introns enhance protein expression in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 101(1):241–251

    CAS  PubMed  Article  Google Scholar 

  • Huang LF, Liu YK, Lu CA, Hsieh SL, Yu SM (2005) Production of human serum albumin by sugar starvation induced promoter and rice cell culture. Transgenic Res 14(5):569–581

    CAS  PubMed  Article  Google Scholar 

  • Ishizaki T, Kumashiro T (2011) Investigations of copy number of transgene, fertility and expression level of an introduced GUS gene in transgenic NERICA produced by Agrobacterium-mediated methods. In Vitro Cell Dev Biol Plant 47(3):339–347

    CAS  Article  Google Scholar 

  • Jan SA, Shinwari ZK, Shah SH, Shahzad A, Zia MA, Ahmad N (2016) In-planta transformation: recent advances. Rom Biotechnol Lett 21(1):11085–11091

    CAS  Google Scholar 

  • Kalbande BB, Patil AS (2016) Plant tissue culture independent Agrobacterium tumefaciens mediated In-planta transformation strategy for upland cotton (Gossypium hirsutum). J Genet Eng Biotechnol 14(1):9–18

    PubMed  PubMed Central  Article  Google Scholar 

  • Kanoria S, Burma PK (2012) A 28 nt long synthetic 5′ UTR (synJ) as an enhancer of transgene expression in dicotyledonous plants. BMC Biotechnol 12(1):85–98

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Karg SR, Kallio PT (2009) The production of biopharmaceuticals in plant systems. Biotechnol Adv 27(6):879–894

    CAS  PubMed  Article  Google Scholar 

  • Kesik-Brodacka M (2018) Progress in biopharmaceutical development. Biotechnol Appl Biochem 65(3):306–322

    CAS  PubMed  Article  Google Scholar 

  • Kinch MS (2015) An overview of FDA-approved biologics medicines. Drug Discov Today 20(4):393–398

    CAS  PubMed  Article  Google Scholar 

  • Kobayashi K (2006) Summary of recombinant human serum albumin development. Biologicals 34(1):55–59

    CAS  PubMed  Article  Google Scholar 

  • Li J, Todd TC, Trick HN (2010) Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Rep 29(2):113–123

    CAS  PubMed  Article  Google Scholar 

  • Luo Y, Wang Y, Liu J, Lan H, Shao M, Yu Y, Quan F, Zhang Y (2015) Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery. Transgenic Res 24(5):875–883

    CAS  PubMed  Article  Google Scholar 

  • Miki B (2002) Transgene expression and control. In Vitro Cell Dev Biol Plant 38(2):139–145

    CAS  Article  Google Scholar 

  • Mizukami A, Caron AL, Picanço-Castro V, Swiech K (2018) Platforms for recombinant therapeutic glycoprotein production. In: Picanço-Castro V, Swiech K (eds) Recombinant glycoprotein production. Humana Press, New York, NY, pp 1–14

    Google Scholar 

  • Nguyen MT, Heo Y, Do BH, Baek S, Kim CJ, Jang YJ, Lee W, Choe H (2020) Bacterial overexpression and purification of soluble recombinant human serum albumin using maltose-binding protein and protein disulphide isomerase. Protein Express Purif 167:105530–105564

    CAS  Article  Google Scholar 

  • Ogawa S, Tomita M, Shimizu K, Yoshizato K (2007) Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production of recombinant human serum albumin. J Biotechnol 128(3):531–544

    CAS  PubMed  Article  Google Scholar 

  • Pang J, Zhou J, Yang D (2020) Knock-in at GluA1 locus improves recombinant human serum albumin expression in rice grain. J Biotechnol 321:87–95

    CAS  PubMed  Article  Google Scholar 

  • Park KY, Wi SJ (2016) Potential of plants to produce recombinant protein products. J Plant Biol 59(6):559–568

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Qian Q, You Z, Ye L, Che J, Wang Y, Wang S, Zhong B (2018) High-efficiency production of human serum albumin in the posterior silk glands of transgenic silkworms, Bombyx mori L. PLoS ONE 13:1–11

    Google Scholar 

  • Reynolds T, de Zafra C, Kim A, Gelzleichter TR (2013) Overview of biopharmaceuticals and comparison with small-molecule drug development. In: Nonclinical development of novel biologics biosimilars vaccines and specialty biologics (pp 3–33). Academic Press

  • Samadder P, Sivamani E, Lu J, Li X, Qu R (2008) Transcriptional and post-transcriptional enhancement of gene expression by the 5′ UTR intron of rice rubi3 gene in transgenic rice cells. Mol Genet Genom 279(4):429–439

    CAS  Article  Google Scholar 

  • Sambrook HC (1989) Molecular cloning a laboratory manual. Cloud Spring Harbor, NY

    Google Scholar 

  • Sedaghati B, Haddad R, Bandehpour M (2019) Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in purslane (Portulaca oleracea L.): an important medicinal plant. Plant Cell Tiss Org Cult 136(2):231–245

    CAS  Article  Google Scholar 

  • Sedaghati B, Haddad R, Bandehpour M (2020) Transient expression of human serum albumin (HSA) in tobacco leaves. Mol Biol Rep 47(9):7169–7177

    CAS  PubMed  Article  Google Scholar 

  • Sedaghati B, Haddad R, Bandehpour M (2021) Development of an efficient in-planta Agrobacterium-mediated transformation method for Iranian purslane (Portulaca oleracea L.) using sonication and vacuum infiltration. Acta Physiol Plant 43(2):1–9

    Article  CAS  Google Scholar 

  • Sethuraman N, Stadheim TA (2006) Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol 17(4):341–346

    CAS  PubMed  Article  Google Scholar 

  • Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, Van Den Elzen PJ, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Bio/technol 8(3):217–221

    CAS  Google Scholar 

  • Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5(1):2–15

    CAS  PubMed  Article  Google Scholar 

  • Subramanyam K, Subramanyam K, Sailaja KV, Srinivasulu M, Lakshmidevi K (2011) Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep 30(3):425–436

    CAS  PubMed  Article  Google Scholar 

  • Swiech K, Picanço-Castro V, Covas DT (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif 84(1):147–153

    CAS  PubMed  Article  Google Scholar 

  • Teixeira MC, Coelho N, Olsson ME, Brodelius PE, Carvalho ISD, Brodelius M (2009) Molecular cloning and expression analysis of three omega-6 desaturase genes from purslane (Portulaca oleracea L.). Biotechnol Lett 31(7):1089–1101

    CAS  PubMed  Article  Google Scholar 

  • Wu H, Awan FS, Vilarinho A, Zeng Q, Kannan B, Phipps T, McCuiston J, Wang W, Caffall K, Altpeter F (2015) Transgene integration complexity and expression stability following biolistic or Agrobacterium-mediated transformation of sugarcane. In Vitro Cell Dev Biol Plant 51(6):603–611

    CAS  Article  Google Scholar 

  • Xu J, Dolan MC, Medrano G, Cramer CL, Weathers PJ (2012) Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 30(5):1171–1184

    CAS  PubMed  Article  Google Scholar 

  • Xu J, Towler M, Weathers PJ (2018) Platforms for plant-based protein production. Bioproc Plant in Vitro Syst 2018:509–548

    Article  Google Scholar 

  • Yaghoubian Y, Siadat SA, Telavat MM, Pirdashti H (2016) Quantify the response of purslane plant growth, photosynthesis pigments and photosystem II photochemistry to cadmium concentration gradients in the soil. Russ J Plant Physiol 63(1):77–84

    CAS  Article  Google Scholar 

  • Zhang YHP, Sun J, Ma Y (2017) Biomanufacturing: history and perspective. J Ind Microbiol Biotechnol 44(4–5):773–784

    CAS  PubMed  Article  Google Scholar 

  • Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30(5):1158–1170

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The partial financial assistance from Cellular and Molecular Biology Research Center at Shahid Beheshti University of Medical Sciences is gratefully acknowledged (Grant No. 27457).

Author information

Authors and Affiliations

Authors

Contributions

BS: Conceptualization, Methodology, Investigation, Writing—original draft. R H: Funding acquisition, Supervision, Writing—review and editing. M B: Investigation, Writing—review and editing.

Corresponding author

Correspondence to Mojgan Bandehpour.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sedaghati, B., Haddad, R. & Bandehpour, M. Purslane (Portulaca oleracea L.) as a novel green-bioreactor for expression of human serum albumin (HSA) gene. Transgenic Res 31, 369–380 (2022). https://doi.org/10.1007/s11248-022-00296-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-022-00296-9

Keywords

  • Bioreactor
  • Biopharmaceuticals
  • Agrobacterium
  • Transformed plant
  • 5′UTR