Skip to main content

I-SceI and customized meganucleases-mediated genome editing in tomato and oilseed rape

Abstract

Meganucleases are rare cutting enzymes that can generate DNA modifications and are part of the plant genome editing toolkit although they lack versatility. Here, we evaluated the use of two meganucleases, I-SceI and a customized meganuclease, in tomato and oilseed rape. Different strategies were explored for the use of these meganucleases. The activity of a customized and a I-SceI meganucleases was first estimated by the use of a reporter construct GFFP with the target sequences and enabled to demonstrate that both meganucleases can generate double-strand break and HDR mediated recombination in a reporter gene. Interestingly, I-SceI seems to have a higher DSB efficiency than the customized meganuclease: up to 62.5% in tomato and 44.8% in oilseed rape. Secondly, the same exogenous landing pad was introduced in both species. Despite being less efficient compared to I-SceI, the customized meganuclease was able to generate the excision of an exogenous transgene (large deletion of up to 3316 bp) present in tomato. In this paper, we also present some pitfalls to be considered before using meganucleases (e.g., potential toxicity) for plant genome editing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Antunes MS, Smith JJ, Jantz D, Medford JI (2012) Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease. BMC Biotechnol 12:1. https://doi.org/10.1186/1472-6750-12-86

    CAS  Article  Google Scholar 

  2. Baranger A, Chèvre AM, Eber F, Renard M (1995) Effect of oilseed rape genotype on the spontaneous hybridization rate with a weedy species:an assessment of transgene dispersal. Theor Appl Genet 91:956–963. https://doi.org/10.1007/BF00223906

    CAS  Article  Google Scholar 

  3. Cardoza V, Stewart CN (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep 21:599–604. https://doi.org/10.1007/s00299-002-0560-y

    CAS  Article  Google Scholar 

  4. Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26:52–64. https://doi.org/10.1016/j.tcb.2015.07.009

    CAS  Article  Google Scholar 

  5. Coventry J, Kott L, Beversdorf WD (1988) Manual for microspore culture technique for Brassica napus. 35. doi: RG.2.1.4952.8720

  6. Curtin SJ, Voytas DF, Stupar RM (2012) Genome engineering of crops with designer nucleases. Plant Genome J 5:42. https://doi.org/10.3835/plantgenome2012.06.0008

    CAS  Article  Google Scholar 

  7. D’Halluin K, Vanderstraeten C, Stals E et al (2008) Homologous recombination: a basis for targeted genome optimization in crop species such as maize. Plant Biotechnol J 6:93–102. https://doi.org/10.1111/j.1467-7652.2007.00305.x

    CAS  Article  Google Scholar 

  8. D’Halluin K, Vanderstraeten C, Van Hulle J et al (2013) Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnol J 11:933–941. https://doi.org/10.1111/pbi.12085

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  9. Epinat JC, Amould S, Chames P et al (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31:2952–2962. https://doi.org/10.1093/nar/gkg375

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  10. Fauser F, Roth N, Pacher M et al (2012) In planta gene targeting. Proc Natl Acad Sci U S A 109:7535–7540. https://doi.org/10.1073/pnas.1202191109

    Article  PubMed Central  PubMed  Google Scholar 

  11. Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Report 13:207–209. https://doi.org/10.1007/BF02670897

    CAS  Article  Google Scholar 

  12. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. https://doi.org/10.1016/0014-4827(68)90403-5

    CAS  Article  Google Scholar 

  13. Gao H, Smith J, Yang M et al (2010) Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 61:176–187. https://doi.org/10.1111/j.1365-313X.2009.04041.x

    CAS  Article  Google Scholar 

  14. Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/ nt. Nucleic Acids Symp Ser 1–218. doi: citeulike-article-id:691774

  15. Henderson DS (2014) Springer: DNA Repair Protocols

  16. Honig A, Marton I, Rosenthal M et al (2015) Transient expression of virally delivered meganuclease in planta generates inherited genomic deletions. Mol Plant 8:1292–1294. https://doi.org/10.1016/j.molp.2015.04.001

    CAS  Article  Google Scholar 

  17. Karimi M, Inzé D, Depicker A (2002) GATEWAYTM vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195. https://doi.org/10.1016/S1360-1385(02)02251-3

    CAS  Article  Google Scholar 

  18. LeBlanc C, Zhang F, Mendez J et al (2018) Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J 93:377–386. https://doi.org/10.1111/tpj.13782

    CAS  Article  PubMed  Google Scholar 

  19. Lichter R (1982) Induction of haploid plants from isolated pollen of brassica napus. Z Pflanzenphysiol 105:427–434. https://doi.org/10.1016/s0044-328x(82)80040-8

    Article  Google Scholar 

  20. Mazier M, Flamain F, Nicolaï M et al (2011) Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. PLoS ONE 6:e29595. https://doi.org/10.1371/journal.pone.0029595

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  21. Muñoz IG, Prieto J, Subramanian S et al (2011) Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus. Nucleic Acids Res 39:729–743. https://doi.org/10.1093/nar/gkq801

    CAS  Article  Google Scholar 

  22. Nandy S, Zhao S, Pathak BP et al (2015) Gene stacking in plant cell using recombinases for gene integration and nucleases for marker gene deletion. BMC Biotechnol 15:1–12. https://doi.org/10.1186/s12896-015-0212-2

    CAS  Article  Google Scholar 

  23. Orel N, Kyryk A, Puchta H (2003) Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant J 35:604–612. https://doi.org/10.1046/j.1365-313X.2003.01832.x

    CAS  Article  Google Scholar 

  24. Pathak BP, Pruett E, Guan H, Srivastava V (2019) Utility of I-SceI and CCR5-ZFN nucleases in excising selectable marker genes from transgenic plants. BMC Res Notes 12:272. https://doi.org/10.1186/s13104-019-4304-2

    Article  PubMed Central  PubMed  Google Scholar 

  25. Pauwels K, Podevin N, Breyer D et al (2014) Engineering nucleases for gene targeting: safety and regulatory considerations. N Biotechnol 31:18–27. https://doi.org/10.1016/j.nbt.2013.07.001

    CAS  Article  Google Scholar 

  26. Polsoni L, Kott LS, Beversdorf WD (1988) Large-scale microspore culture technique for mutation–selection studies in Brassica napus. Can J Bot 66:1681–1685. https://doi.org/10.1139/b88-230

    Article  Google Scholar 

  27. Puchta H, Dujon B, Hohn B (1993) Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21:5034–5040. https://doi.org/10.1093/nar/21.22.5034

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  28. Ran Y, Liang Z, Gao C (2017) Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci 60:490–505. https://doi.org/10.1007/s11427-017-9022-1

    CAS  Article  Google Scholar 

  29. Silva G, Poirot L, Galetto R et al (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11:11–27. https://doi.org/10.2174/156652311794520111

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  30. So YY, Bomblies K, Seung KY et al (2005) The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta 221:523–530. https://doi.org/10.1007/s00425-004-1466-4

    CAS  Article  Google Scholar 

  31. Stoddard BL (2011) Homing endonucleases: From microbial genetic invaders to reagents for targeted DNA modification. Structure 19:7–15. https://doi.org/10.1016/j.str.2010.12.003

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  32. Taylor GK, Petrucci LH, Lambert AR et al (2012) LAHEDES: The LAGLIDADG homing endonuclease database and engineering server. Nucleic Acids Res 40:110–116. https://doi.org/10.1093/nar/gks365

    CAS  Article  Google Scholar 

  33. Tzfira T, Frankman LR, Vaidya M, Citovsky V (2003) Site-Specific Integration of Agrobacterium tumefaciens T-DNA via Double-Stranded Intermediates. Plant Physiol 133:1011–1023. https://doi.org/10.1104/pp.103.032128

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  34. Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350. https://doi.org/10.1146/annurev-arplant-042811-105552

    CAS  Article  Google Scholar 

  35. Watanabe K, Breier U, Hensel G et al (2016) Stable gene replacement in barley by targeted double-strand break induction. J Exp Bot 67:1433–1445. https://doi.org/10.1093/jxb/erv537

    CAS  Article  Google Scholar 

  36. Werther R, Hallinan JP, Lambert AR et al (2017) Crystallographic analyses illustrate significant plasticity and efficient recoding of meganuclease target specificity. Nucleic Acids Res 45:8621–8634. https://doi.org/10.1093/nar/gkx544

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  37. Xu H, Liu B, Pardinas J (2015) Biological and technological implications of Meganucleases. Gene Gene Ed 1:41–46. https://doi.org/10.1166/gge.2015.1005

    CAS  Article  Google Scholar 

  38. Yau Y-Y, Stewart CN (2013) Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 13:36. https://doi.org/10.1186/1472-6750-13-36

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  39. Yin K, Gao C, Qiu J-L (2017) Progress and prospects in plant genome editing. Nat Plants 3:17107. https://doi.org/10.1038/nplants.2017.107

    CAS  Article  Google Scholar 

  40. Youssef D, Nihou A, Partier A et al (2018) Induction of targeted deletions in transgenic bread wheat (Triticum aestivum L.) using customized Meganuclease. Plant Mol Biol Rep 36:71–81. https://doi.org/10.1007/s11105-017-1062-y

    CAS  Article  Google Scholar 

  41. Zhang F, Thomson JG, Puchta H (2015) Advances in new technology for targeted modifi cation of plant genomes

Download references

Acknowledgements

This work was funded by the Investissement d’Avenir program of the French National Agency of Research for the project GENIUS (ANR-11-BTBR-0001_GENIUS). The authors thank Peter Rogowsky and Paul Wyatt for their efficient management of the GENIUS project, for providing vectors with CMN and I-SceI respectively and for their contribution and review to the present study. The authors thank Cellectis for providing the meganuclease sequences and their expertise in the genome editing field. The authors thanks Emmanuel Botton for his work with tomato plants.

Funding

This work was funded by the Investissement d’Avenir program of the French National Agency of Research for the project GENIUS (ANR-11-BTBR-0001_GENIUS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marianne Mazier.

Ethics declarations

Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

Code sharing not applicable to this article as no codes were generated or analyzed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12364 kb)

Supplementary file2 (DOCX 12366 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Danilo, B., Montes, É., Archambeau, H. et al. I-SceI and customized meganucleases-mediated genome editing in tomato and oilseed rape. Transgenic Res (2021). https://doi.org/10.1007/s11248-021-00287-2

Download citation

Keywords

  • Meganuclease
  • Oilseed rape
  • Tomato
  • Genome editing