Skip to main content

Enhancing plant growth and biomass production by overexpression of GA20ox gene under control of a root preferential promoter

Abstract

Overexpression of GA20 oxidase gene has been a recent trend for improving plant growth and biomass. Constitutive expression of GA20ox has successfully improved plant growth and biomass in several plant species. However, the constitutive expression of this gene causes side-effects, such as reduced leaf size and stem diameter, etc. To avoid these effects, we identified and employed different tissue-specific promoters for GA20ox overexpression. In this study, we examined the utility of At1g promoter to drive the expression of GUS (β-glucuronidase) reporter and AtGA20ox genes in tobacco and Melia azedarach. Histochemical GUS assays and quantitative real-time-PCR results in tobacco showed that At1g was a root-preferential promoter whose expression was particularly strong in root tips. The ectopic expression of AtGA20ox gene under the control of At1g promoter showed improved plant growth and biomass of both tobacco and M. azedarach transgenic plants. Stem length as well as stem and root fresh weight increased by up to 1.5–3 folds in transgenic tobacco and 2 folds in transgenic M. azedarach. Both tobacco and M. azedarach transgenic plants showed increases in root xylem width with xylem to phloem ratio over 150–200% as compared to WT plants. Importantly, no significant difference in leaf shape and size was observed between At1g::AtGA20ox transgenic and WT plants. These results demonstrate the great utility of At1g promoter, when driving AtGA20ox gene, for growth and biomass improvements in woody plants and potentially some other plant species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aiken RM, Smucker AJM (1996) Root system regulation of whole plant growth. Annu Rev Phytopathol 34:325–346

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. Ayano M, Kani T, Kojima M, Sakakibara H, Kitaoka T, Kuroha T, Angeles-Shim RB, Kitano H, Nagai K, Ashikariet M (2014) Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell Environ 37:2313–2324

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Bertani G (1951) Studies on lysogenesis i.: the mode of phage liberation by lysogenic escherichia coli1. J Bacteriol 62:293–300

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254–265

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Bui TP, Ly LK, Do PT, Nguyen NH, Nguyen PV, Tran QH, Pham NB, Chu HH (2019) Improvement of biomass production in transgenic Melia azedarach L. plants by the expression of a GA20-oxidase gene. Turk J Bot 43:281–289

    CAS  Article  Google Scholar 

  6. Carrera E, Bou J, García-Martínez JL, Prat S (2000) Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. Plant J 22:247–256

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. Chen L, Jiang B, Wu C, Sun S, Hou W, Han T (2014) GmPRP2 promoter drives root-preferential expression in transgenic Arabidopsis and soybean hairy roots. BMC Plant Biol 14:245. https://doi.org/10.1186/s12870-014-0245-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Chen D, Richardson T, Chai S, Lynne McIntyre C, Rae AL, Xue G-P (2016) Drought-up-regulated TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7, and enhances root length and biomass in wheat. Plant Cell Physiol 57:2076–2090

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. Dayan J, Schwarzkopf M, Avni A, Aloni R (2010) Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnol J 8:425–435

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. Dayan J, Voronin N, Gong F, Sun T, Hedden P, Fromm H, Aloni R (2012) Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell 24:66–79

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Dayan J (2018) Gibberellin transport. Annual Plant Reviews online. pp 95–119

  13. Den Herder G, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607

    Article  CAS  Google Scholar 

  14. Do PT, De Tar JR, Lee H, Folta MK, Zhang ZJ (2016) Expression of Zm GA 20ox cDNA alters plant morphology and increases biomass production of switchgrass (Panicum virgatum L.). Plant Biotechnol J 14:1532–1540

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Dong DX, Thang BV, Giang HV, Son LV, Ha CH (2011) Transformation of Gibberellin 20-oxidase encoded gene to paradise tree (Melia azedarch L.) via Agrobacterium tumefaciens. J Biotechnol 9(2):217–222 (Vietnamese with an English abstract)

    Google Scholar 

  16. Doyle JJ, Doyle JL, Brown AH, Grace JP (1990) Multiple origins of polyploids in the Glycine tabacina complex inferred from chloroplast DNA polymorphism. Proc Natl Acad Sci 87:714–717

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of therold promoter, domain a of the 35S promoter and the 35S 2 promoter. Transgenic Res 4:388–396

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. Fang R-X, Nagy F, Sivasubramaniam S, Chua N-H (1989) Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1:141–150

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fei H, Chaillou S, Hirel B, Mahon JD, Vessey KJ (2003) Overexpression of a soybean cytosolic glutamine synthetase gene linked to organ-specific promoters in pea plants grown in different concentrations of nitrate. Planta 216:467–474

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. García-Hurtado N, Carrera E, Ruiz-Rivero O, López-Gresa MP, Hedden P, Gong F, García-Martínez JL (2012) The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J Exp Bot 63:5803–5813

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  22. Ghanem ME, Hichri I, Smigocki AC, Albacete A, Fauconnier M-L, Diatloff E, Martinez-Andujar C, Lutts S, Dodd IC, Pérez-Alfocea F (2011) Root-targeted biotechnology to mediate hormonal signalling and improve crop stress tolerance. Plant Cell Rep 30:807–823

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Hinsinger P, Brauman A, Devau N, Gérard F, Jourdan C, Laclau J-P, Le Cadre E, Jaillard B, Plassard C (2011) Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant Soil 348:29–61

    CAS  Article  Google Scholar 

  26. Hossain GS, Waditee R, Hibino T, Tanaka Y, Takabe T (2006) Root specific expression of Na+/H+ antiporter gene from Synechocystis sp. PCC 6803 confers salt tolerance of tobacco plant. Plant Biotechnol 23:275–281

    CAS  Article  Google Scholar 

  27. Huang S, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM (1998) Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol 118:773–781

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Israelsson M, Sundberg B, Moritz T (2005) Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. Plant J 44:494–504

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. Jeon H-W, Cho J-S, Park E-J, Han K-H, Choi Y-I, Ko J-H (2016) Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar. Plant Biotechnol J 14:1161–1170

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Jeong JS, Kim YS, Baek KH, Jung H, Ha S-H, Do Choi Y, Kim M, Reuzeau C, Kim J-K (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Kamo KK (2003) Long-term expression of the uidA gene in Gladiolus plants under control of either the ubiquitin, rolD, mannopine synthase, or cauliflower mosaic virus promoters following three seasons of dormancy. Plant Cell Rep 21:797–803

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Liu J-J, Ekramoddoullah AK (2003) Root-specific expression of a western white pine PR10 gene is mediated by different promoter regions in transgenic tobacco. Plant Mol Biol 52:103–120

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Matthysse AG, Scott TK (1984) Functions of hormones at the whole plant level of organization. Horm Regul Dev II:219–243

    Google Scholar 

  34. Mauriat M, Petterle A, Bellini C, Moritz T (2014) Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. Plant J 78:372–384

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Article  Google Scholar 

  36. Noh SA, Lee H-S, Huh EJ, Huh GH, Paek K-H, Shin JS, Bae JM (2010) SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweetpotato (Ipomoea batatas). J Exp Bot 61:1337–1349

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Noh SA, Lee H-S, Huh GH, Oh M-J, Paek K-H, Shin JS, Bae JM (2012) A sweetpotato SRD1 promoter confers strong root-, taproot-, and tuber-specific expression in Arabidopsis, carrot, and potato. Transgenic Res 21:265–278

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. Park E-J, Lee W-Y, Kurepin LV, Zhang R, Janzen L, Pharis RP (2014) Plant hormone-assisted early family selection in Pinus densiflora via a retrospective approach. Tree Physiol 35:86–94

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  39. Peña-Castro JM, del Moral S, Núñez-López L, Barrera-Figueroa BE, Amaya-Delgado L (2017) Biotechnological strategies to improve plant biomass quality for bioethanol production. BioMed Res Int 2017:7824076. https://doi.org/10.1155/2017/7824076

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Pimenta Lange MJ, Lange T (2016) Ovary-derived precursor gibberellin A9 is essential for female flower development in cucumber. Development 143:4425–4429

    PubMed  PubMed Central  Google Scholar 

  41. Procházka S (1981) Translocation of growth regulators from roots in relation to the stem apical dominance in pea (Pisum sativum L.) seedlings. In: Structure and Function of Plant Roots. Springer, pp 407–409

  42. Proebsting WM, Hedden P, Lewis MJ, Croker SJ, Proebsting LN (1992) Gibberellin concentration and transport in genetic lines of pea: effects of grafting. Plant Physiol 100:1354–1360

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke CS (2011) Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23:1322–1336

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Regnault T, Davière J-M, Wild M, Sakvarelidze-Achard L, Heintz D, Bergua EC, Diaz IL, Gong F, Hedden P, Achard P (2015) The gibberellin precursor GA 12 acts as a long-distance growth signal in Arabidopsis. Nat Plants 1:15073. https://doi.org/10.1038/nplants.2015.73

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. Tanimoto E (1987) Gibberellin-dependent root elongation in Lactuca sativa: recovery from growth retardant-suppressed elongation with thickening by low concentration of GA3. Plant Cell Physiol 28:963–973

    CAS  Google Scholar 

  47. Tanimoto E (1988) Gibberellin regulation of root growth with change in galactose content of cell walls in Pisum sativum. Plant Cell Physiol 29:269–280

    CAS  Google Scholar 

  48. Tanimoto E (1994) Interaction of gibberellin A3 and ancymidol in the growth and cell-wall extensibility of dwarf pea roots. Plant Cell Physiol 35:1019–1028

    CAS  Google Scholar 

  49. Topping JF (1998) Tobacco transformation. In: Plant Virology Protocols. Springer, pp 365–372

  50. Vaughan SP, James DJ, Lindsey K, Massiah AJ (2006) Characterization of FaRB7, a near root-specific gene from strawberry (Fragariaxananassa Duch.) and promoter activity analysis in homologous and heterologous hosts. J Exp Bot 57:3901–3910

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. Vijaybhaskar V, Subbiah V, Kaur J, Vijayakumari P, Siddiqi I (2008) Identification of a root-specific glycosyltransferase from Arabidopsis and characterization of its promoter. J Biosci 33:185–193

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. Voorend W, Nelissen H, Vanholme R et al (2016) Overexpression of GA 20-OXIDASE 1 impacts plant height, biomass allocation and saccharification efficiency in maize. Plant Biotechnol J 14:997–1007

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. Zhang X, Davis RH (1991) The rate of collisions due to Brownian or gravitational motion of small drops. J Fluid Mech 230:479–504

    CAS  Article  Google Scholar 

  55. Zi J, Mafu S, Peters RJ (2014) To gibberellins and beyond! Surveying the evolution of (di) terpenoid metabolism. Annu Rev Plant Biol 65:259–286

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the International Joint Laboratory -"Rice Functional Genomics and Biotechnology for Plants and Associated Microorganisms" (LMI Rice-2) at the University of Sciences and Technology of Hanoi (USTH), Hanoi, Vietnam for histological equipment.

Funding

This research was supported by the Vietnamese national grants to NP to Develop and evaluate fast-growing transgenic Melia azedarach Linn for forestry plantation.

Author information

Affiliations

Authors

Contributions

LL, DP and CH designed the study; NP, CH, and PN conceived and supervised the study; LL and BT conducted the experiments; OP assisted phenotyping; LA provided initial training and assisted with the histological analysis; LL and BT analysed the data; LL and DP wrote the manuscript; ZZ and CH revised and proof-read the manuscript.

Corresponding authors

Correspondence to Phat Tien Do or Ha Hoang Chu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ly, L.K., Bui, T.P., Van Thi Le, A. et al. Enhancing plant growth and biomass production by overexpression of GA20ox gene under control of a root preferential promoter. Transgenic Res (2021). https://doi.org/10.1007/s11248-021-00282-7

Download citation

Keywords

  • At1g-promoter
  • GA20 oxidase
  • Melia azedarach
  • Root-preferential
  • Transgenic