Skip to main content

Overexpression of an aquaporin protein from Aspergillus glaucus confers salt tolerance in transgenic soybean

Abstract

Salt stress is an important abiotic factor that causes severe losses in soybean yield and quality. Therefore, breeding salt-tolerant soybean germplasm resources via genetic engineering has gained importance. Aspergillus glaucus, a halophilic fungus that exhibits significant tolerance to salt, carries the gene AgGlpF. In this study, we used the soybean cotyledonary node transformation method to transfer the AgGlpF gene into the genome of the soybean variety Williams 82 to generate salt-tolerant transgenic soybean varieties. The results of PCR, Southern blot, ddPCR, and RT-PCR indicated that AgGlpF was successfully integrated into the soybean genome and stably expressed. When subjected to salt stress conditions via treatment with 250 mM NaCl for 3 d, the transgenic soybean plants showed significant tolerance compared with wild-type plants, which exhibited withering symptoms and leaf abscission after 9 d. The results of this study indicated that the transfer of AgGlpF into the genome of soybean plants produced transgenic soybean with significantly improved salt stress tolerance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693. https://doi.org/10.1093/nar/25.22.4692

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Attitalla IH (2011) Modified CTAB method for high quality genomic DNA extraction from medicinal plants. Pak J Biol Sci 14:998–999. https://doi.org/10.3923/pjbs.2011.998.999

    Article  PubMed  Google Scholar 

  3. Calvo-Polanco M, Sanchez-Romera B, Aroca R (2014) Mild salt stress conditions induce different responses in root hydraulic conductivity of phaseolus vulgaris over-time. PLoS ONE 9:e90631. https://doi.org/10.1371/journal.pone.0090631

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Chang W, Liu X, Zhu J, Fan W, Zhang Z (2016) An aquaporin gene from halophyte Sesuvium portulacastrum, SpAQP1, increases salt tolerance in transgenic tobacco. Plant Cell Rep 35:385–395. https://doi.org/10.1007/s00299-015-1891-9

    CAS  Article  PubMed  Google Scholar 

  5. Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215. https://doi.org/10.1104/pp.125.3.1206

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Cheng Q, Gan Z, Wang Y, Lu S, Hou Z, Li H, Xiang H, Liu B, Kong F, Dong L (2020) The soybean gene J contributes to salt stress tolerance by up-regulating salt-responsive genes. Front Plant Sci 11:272. https://doi.org/10.3389/fpls.2020.00272

    Article  PubMed  PubMed Central  Google Scholar 

  7. Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867. https://doi.org/10.1111/tpj.13299

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Ding X, Jiang Y, Zhao H, Guo D, He L, Liu F, Zhou Q, Nandwani D, Hui D, Yu J (2018) Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system. PLoS ONE 13:e0202090. https://doi.org/10.1371/journal.pone.0202090

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Ge F, Tao P, Zhang Y, Wang J (2014) Characterization of AQP gene expressions in Brassica napus during seed germination and in response to abiotic stresses. Biol Plant 58:274–282. https://doi.org/10.1007/s10535-013-0386-1

    CAS  Article  Google Scholar 

  10. Han Y, Li R, Liu Y, Fan S, Wan S, Zhang X, Li G (2021) The major intrinsic protein family and their function under salt-stress in peanut. Front Genet 12:639585. https://doi.org/10.3389/fgene.2021.639585

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Hellal FA, Abdelhamid M (2013) Nutrient management practices for enhancing soybean (Glycine max L.) production. Acta Biologica Colombiana 18:3–14

    Google Scholar 

  12. Hodges DM, Delong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611. https://doi.org/10.1007/s004250050524

    CAS  Article  Google Scholar 

  13. Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice 5:11. https://doi.org/10.1186/1939-8433-5-11

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hu W, Yuan Q, Wang Y, Cai R, Deng X, Wang J, Zhou S, Chen M, Chen L, Huang C, Ma Z, Yang G, He G (2012) Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant Cell Physiol 53:2127–2141. https://doi.org/10.1093/pcp/pcs154

    CAS  Article  PubMed  Google Scholar 

  15. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369. https://doi.org/10.1104/pp.126.4.1358

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Kapilan R, Vaziri M, Zwiazek JJ (2018) Regulation of aquaporins in plants under stress. Biol Res 51:4. https://doi.org/10.1186/s40659-018-0152-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Kayum MA, Park JI, Nath UK, Biswas MK, Kim HT, Nou IS (2017) Genome-wide expression profiling of aquaporin genes confer responses to abiotic and biotic stresses in Brassica rapa. BMC Plant Biol 17:23. https://doi.org/10.1186/s12870-017-0979-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Ko KP, Park SK, Yang JJ, Ma SH, Gwack J, Shin A, Kim YJ, Kang D, Chang SH, Shin HR, Yoo KY (2013) Intake of soy products and other foods and gastric cancer risk: a prospective study. J Epidemiol 23:337–343. https://doi.org/10.2188/jea.je20120232

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee SH, Chung GC, Jang JY, Ahn SJ, Zwiazek JJ (2012) Overexpression of PIP2;5 aquaporin alleviates effects of low root temperature on cell hydraulic conductivity and growth in Arabidopsis. Plant Physiol 159:479–488. https://doi.org/10.1104/pp.112.194506

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Leonowicz G, Trzebuniak KF, Zimak-Piekarczyk P, Slesak I, Mysliwa-Kurdziel B (2018) The activity of superoxide dismutases (SODs) at the early stages of wheat deetiolation. PLoS ONE 13:e0194678. https://doi.org/10.1371/journal.pone.0194678

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Li M, Chen R, Jiang Q, Sun X, Zhang H, Hu Z (2021) GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Mol Biol 105:333–345. https://doi.org/10.1007/s11103-020-01091-y

    CAS  Article  PubMed  Google Scholar 

  22. Liu X, Wei Y, Zhou X, Pei X, Zhang S (2015) Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms. Appl Environ Microbiol 81:6926–6937. https://doi.org/10.1128/AEM.02127-15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Liu H, Yang L, Xin M, Ma F, Liu J (2019) Gene-wide analysis of aquaporin gene family in malus domestica and heterologous expression of the gene MpPIP2;1 confers drought and salinity tolerance in Arabidposis thaliana. Int J Mol Sci 20:3710. https://doi.org/10.3390/ijms20153710

    CAS  Article  PubMed Central  Google Scholar 

  24. Ma X, Fu J, Tang Y, Yu T, Yin Z, Chen J, Zhou Y, Chen M, Xu Z, Ma Y (2020) GmNFYA13 improves salt and drought tolerance in transgenic soybean plants. Front Plant Sci 11:587244. https://doi.org/10.3389/fpls.2020.587244

    Article  PubMed  PubMed Central  Google Scholar 

  25. Paz MM, Martinez JC, Kalvig AB, Fonger TM, Wang K (2006) Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25:206–213. https://doi.org/10.1007/s00299-005-0048-7

    CAS  Article  PubMed  Google Scholar 

  26. Phang TH, Shao G, Lam HM (2008) Salt tolerance in soybean. J Integr Plant Biol 50:1196–1212. https://doi.org/10.1111/j.1744-7909.2008.00760.x

    CAS  Article  PubMed  Google Scholar 

  27. Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP 28 protein. Science 256:3. https://doi.org/10.1126/science.256.5055.385

    Article  Google Scholar 

  28. Qian Z, Song J, Chaumont F, Ye Q (2015) Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses. Plant Cell Environ 38:461–473. https://doi.org/10.1111/pce.12319

    CAS  Article  PubMed  Google Scholar 

  29. Redillas M, Park SH, Lee JW, Kim YS, Jeong JS, Jung H, Bang SW, Hahn TR, Kim JK (2011) Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnol Rep 6:89–96. https://doi.org/10.1007/s11816-011-0210-3

    Article  Google Scholar 

  30. Reuscher S, Akiyama M, Mori C, Aoki K, Shibata D, Shiratake K (2013) Genome-wide identification and expression analysis of aquaporins in tomato. PLoS ONE 8:e79052. https://doi.org/10.1371/journal.pone.0079052

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Rezaei MA, Kaviani B, Masouleh AK (2012) The effect of exogenous glycine betaine on yield of soybean [Glycine max (L.) Merr.] in two contrasting cultivars Pershing and DPX under soil salinity stress. Plant Omics 5:87–93

    Google Scholar 

  32. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577. https://doi.org/10.1093/pcp/pci172

    CAS  Article  PubMed  Google Scholar 

  33. Shahid SA, Zaman M, Heng L (2018) Soil salinity: historical perspectives and a world overview of the problem. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques, Springer, Cham, pp 43–53. https://doi.org/10.1007/978-3-319-96190-3_2

  34. Sreedharan S, Shekhawat UKS, Ganapathi TR (2015) Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2;6) in transgenic banana plants signals its pivotal role in salt tolerance. Plant Mol Biol 88:41–52. https://doi.org/10.1007/s11103-015-0305-2

    CAS  Article  PubMed  Google Scholar 

  35. Szollosi R (2014) Chapter 3-superoxide dismutase (SOD) and abiotic stress tolerance in plants: an overview. In: Ahmad P (ed) Oxidative damage to plants. Academic Press, San Diego, pp 89–129. https://doi.org/10.1016/B978-0-12-799963-0.00003-4

    Chapter  Google Scholar 

  36. Taïbi K, Taïbi F, Ait Abderrahim L, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312. https://doi.org/10.1016/j.sajb.2016.03.011

    CAS  Article  Google Scholar 

  37. Turhan E, Ergin S (2012) Soluble sugars and sucrose-metabolizing enzymes related to cold acclimation of sweet cherry cultivars grafted on different rootstocks. ScientificWorldJournal 2012:979682. https://doi.org/10.1100/2012/979682

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Vieira PM, Santos MP, Andrade CM, Souza-Neto OA, Ulhoa CJ, Aragao FJL (2017) Overexpression of an aquaglyceroporin gene from Trichoderma harzianum improves water-use efficiency and drought tolerance in Nicotiana tabacum. Plant Physiol Biochem 121:38–47. https://doi.org/10.1016/j.plaphy.2017.10.012

    CAS  Article  PubMed  Google Scholar 

  39. Vitali V, Bellati J, Soto G, Ayub ND, Amodeo G (2015) Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species. AoB Plants 7:136. https://doi.org/10.1093/aobpla/plv136

    Article  Google Scholar 

  40. Wang L, Li Q, Lei Q, Feng C, Gao Y, Zheng X, Zhao Y, Wang Z, Kong J (2015) MzPIP2;1: an aquaporin involved in radial water movement in both water uptake and transportation, altered the drought and salt tolerance of transgenic Arabidopsis. PLoS ONE 10:e0142446. https://doi.org/10.1371/journal.pone.0142446

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Jiang L, Chen J, Tao L, An Y, Cai H, Guo C (2018) Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean. PLoS ONE 13:e0192382. https://doi.org/10.1371/journal.pone.0192382

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Wang X, Gao F, Bing J, Sun W, Feng X, Ma X, Zhou Y, Zhang G (2019) Overexpression of the Jojoba aquaporin gene, ScPIP1, enhances drought and salt tolerance in transgenic Arabidopsis. Int J Mol Sci 20:153. https://doi.org/10.3390/ijms20010153

    CAS  Article  PubMed Central  Google Scholar 

  43. Wang Y, Zhao Z, Liu F, Sun L, Hao F (2020) Versatile roles of aquaporins in plant growth and development. Int J Mol Sci 21:9485. https://doi.org/10.3390/ijms21249485

    CAS  Article  PubMed Central  Google Scholar 

  44. Xu Y, Hu W, Liu J, Song S, Hou X, Jia C, Li J, Miao H, Wang Z, Tie W, Xu B, Jin Z (2020) An aquaporin gene MaPIP2-7 is involved in tolerance to drought, cold and salt stresses in transgenic banana (Musa acuminata L.). Plant Physiol Biochem 147:66–76. https://doi.org/10.1016/j.plaphy.2019.12.011

    CAS  Article  PubMed  Google Scholar 

  45. Zeng A, Chen P, Korth KL, Ping J, Thomas J, Wu C, Srivastava S, Pereira A, Hancock F, Brye K, Ma J (2019) RNA sequencing analysis of salt tolerance in soybean (Glycine max). Genomics 111:629–635. https://doi.org/10.1016/j.ygeno.2018.03.020

    CAS  Article  PubMed  Google Scholar 

  46. Zhang X, Tang Y, Ma Q, Yang C, Mu Y, Suo H, Luo L, Nian H (2013) OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PLoS ONE 8:e83011. https://doi.org/10.1371/journal.pone.0083011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang L, Li T, Wang Y, Zhang Y, Dong Y (2019) FvC5SD overexpression enhances drought tolerance in soybean by reactive oxygen species scavenging and modulating stress-responsive gene expression. Plant Cell Rep 38:1039–1051. https://doi.org/10.1007/s00299-019-02424-y

    CAS  Article  PubMed  Google Scholar 

  48. Zhang J, Wen W, Li H, Lu Q, Xu B, Huang B (2020) Overexpression of an aquaporin gene PvPIP2;9 improved biomass yield, protein content, drought tolerance and water use efficiency in switchgrass (Panicum virgatum L.). GCB Bioenergy 12:979–991. https://doi.org/10.1111/gcbb.12751

    CAS  Article  Google Scholar 

  49. Zhu C, Chen Z, Jiang Z (2016) Expression, distribution and role of aquaporin water channels in human and animal stomach and intestines. Int J Mol Sci 17:1399. https://doi.org/10.3390/ijms17091399

    CAS  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Basic Research Funds of JAAS (KYJF2021JQ001), the National Natural Science Foundation of China (31501327), and the Youth Scientific Research Foundation of Jilin (20150520123JH). We would like to thank Editage (www.editage.cn) for English language editing.

Author information

Affiliations

Authors

Contributions

FWL, LZ, and SHZ planned and designed the study. FWL, HJN, and LZ performed the experiments, generated the figures, and drafted the manuscript. WY, YBX, XCT, and HJN contributed to the execution of the abiotic experiments. XDL provided the AgGlpF gene. SHZ and LZ contributed to the discussion of this manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ling Zhang or Shi-Hong Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest. The authors alone are responsible for the content and composition of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, F., Ni, H., Yan, W. et al. Overexpression of an aquaporin protein from Aspergillus glaucus confers salt tolerance in transgenic soybean. Transgenic Res 30, 727–737 (2021). https://doi.org/10.1007/s11248-021-00280-9

Download citation

Keywords

  • AgGlpF gene
  • Transgenic soybean
  • Salt tolerance