Efficient identification of genomic insertions and flanking regions through whole-genome sequencing in three transgenic soybean events

Abstract

Genomic insertions and flanking regions of transgenes in host genomes constitute a critical component of precise molecular characterization and event-specific detection, which are required in the development and assessment for regulatory approval of genetically modified (GM) crops. Previously, we reported three transgenic soybean events harboring the inverted repeats of the soybean mosaic virus NIb (nuclear inclusion b) gene, exhibiting significantly enhanced resistance to multiple Potyvirus strains. To facilitate safety assessment and event-specific detection, we identified the transgene insertion sites and flanking sequences of the events L120, L122, and L123 using whole-genome sequencing. More than 14.48 Gb sequence data (13 × coverage) were generated using the Illumina HiSeq Xten platform for each event. The sequence reads corresponding to boundaries of inserted T-DNA, and associated native flanking sequences were identified by bioinformatic comparison with the soybean reference genome (Wm82.a2.v1) and the transformation vector sequence. The results indicated that two T-DNA insertions occurred in L120, on Chr07 and Chr13, while L122 and L123 showed single insertions, on Chr02 and Chr06, respectively. Based on the flanking sequences of the inserted T-DNA, the event-specific detection for each event was established using specific PCR primers, and PCR amplification followed by sequencing of PCR products further confirmed the putative insertion loci and flanking regions in the transgenic lines. Our results demonstrate the efficacy and robustness of whole-genome sequencing in identifying the genomic insertions and flanking regions in GM crops. Moreover, the characterization of insertion loci and the establishment of event-specific detection will facilitate the application and development of broad-spectrum virus-resistant transgenic soybean cultivars.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ajay SS, Parker SC, Abaan HO, Fajardo KV, Marqulies EH (2011) Accurate and comprehensive sequencing of personal genomes. Genome Res 21(9):1498–1505

    Article  Google Scholar 

  2. Babekova R, Funk T, Pecoraro S, Engel KH, Busch U (2009) Development of an event-specific real-time PCR detection method for the transgenic Bt rice line KMD1. Eur Food Res Technol 228(5):707–716

    CAS  Article  Google Scholar 

  3. Campbell PJ, Stephens PJ, Pleasance ED, O’Meara S, Li H, Santarius T, Stebbings LA, Leroy C, Edkins S, Hardy C, Teague JW, Menzies A, Goodhead I, Turner DJ, Clee CM, Quail MA, Cox A, Browm C, Durbin R, Hurles ME, Edwards PA, Bignell G, Stratton MR, Futreal PA (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40(6):722–729

    CAS  Article  Google Scholar 

  4. Chen SY, Jin WZ, Wang MY, Zhang F, Zhou J, Jia QJ, Wu YR, Liu FY, Wu P (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36(1):105–113

    CAS  Article  Google Scholar 

  5. Codex Alimentarius (2003) Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants. Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, Food and Agriculture Organization of the United Nations, Rome, Italy

  6. Dubose AJ, Lichtenstein ST, Narisu N, Bonnycastle LL, Swift AJ, Chines PS, Collins FS (2013) Use of microarray hybrid capture and next-generation sequencing to identify the anatomy of a transgene. Nucleic Acids Res 41(6):e70

    CAS  Article  Google Scholar 

  7. European Food Safety Authority [EFSA] (2010) Guidance on the environmental risk assessment of genetically modifified plants. EFSA J 8:1879

    Article  Google Scholar 

  8. Guo B, Yong G, Hong H, Qiu LJ (2016) Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method. Front Plant Sci 7:1009

    PubMed  PubMed Central  Google Scholar 

  9. Guo L, Liang SJ, Zhang ZY, Liu H, Wang SW, Pan KH, Xu J, Ren X, Pei SR, Yang GP (2019) Genome assembly of Nannochloropsis oceanica provides evidence of host nucleus overthrow by the symbiont nucleus during speciation. Commun Biol 2:249

    Article  Google Scholar 

  10. Hormozdiari F, Hajirasouliha I, Mcpherson A, Eichler EE, Sahinalp C (2011) Simultaneous structural variation discovery among multiple paired-end sequenced genomes. Genome Res 21(12):2203–2212

    CAS  Article  Google Scholar 

  11. Inagaki S, Henry IM, Lieberman MC, Comai L (2015) High-throughput analysis of T-DNA location and structure using sequence capture. PLoS ONE 10(10):e0139672

    Article  Google Scholar 

  12. Kok E, Pedersen J, Onori R, Sowa S, Schauzu M, Schrijver AD, Teeri TH (2014) Plants with stacked genetically modified events: to assess or not to assess? Trends Biotechnol 32(2):70–73

    CAS  Article  Google Scholar 

  13. Kovalic D (2012) The use of next generation sequencing and junction sequence analysis bioinformatics to achieve molecular characterization of crops improved through modern biotechnology. Plant Genome 5(3):149–163

    CAS  Article  Google Scholar 

  14. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    CAS  Article  Google Scholar 

  15. Latham JR, Wilson AK (2006) Steinbrecher RA (2006) The mutational consequences of plant transformation. J Biomed Biotechnol 2:25376

    Google Scholar 

  16. Lepage E, Zampini E, Boyle B, Brisson N (2013) Time and cost-efficient identification of T-DNA insertion sites through targeted genomic sequencing. PLoS ONE 8(8):e70912

    CAS  Article  Google Scholar 

  17. Liang CJ, van Dijk JP, Scholtens IM, Staats M, Prins TW, Voorhuijzen MM, da Silva AM, Arisi AC, den Dunnen JI, Kok EJ (2014) Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing. Anal Bioanal Chem 406(11):2603–2611

    CAS  Article  Google Scholar 

  18. Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8(3):457–463

    CAS  Article  Google Scholar 

  19. Milcamps A, Rabe S, Cade R, De Framond AJ, Henriksson P, Kramer V, Lisboa D, Pastor-Benito S, Willits MG, Lawrence D, van den Eede G (2009) Validity assessment of the detection method of maize event Bt10 through investigation of its molecular structure. J Agric Food Chem 57(8):3156–3163

    CAS  Article  Google Scholar 

  20. Nacry P, Camilleri C, Courtial B, Caboche M, Bouchez D (1998) Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149(2):641–650

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ochman H, Gerber AS, Hartl DL (1998) Genetic applications of an inverse polymerase chain reaction. Genetics 120(3):621–623

    Article  Google Scholar 

  22. O’Malley RC, Ecker JR (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J 61(6):928–940

    Article  Google Scholar 

  23. Park D, Kim D, Jang G, Lim JS, Shin YJ, Kim J, Seo MS, Park SH, Kim JK, Kwon TH, Choi IY (2015) Efficiency to discovery transgenic loci in GM rice using next generation sequencing whole genome re-sequencing. Genomics Inform 13(3):81

    Article  Google Scholar 

  24. Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15(1):8–15

    CAS  Article  Google Scholar 

  25. Siddique K, Wei JJ, Li R, Zhang DB, Shi JX (2019) Identification of T-DNA insertion site and flanking sequence of a genetically modified maize event IE09S034 using next-generation sequencing technology. Mol Biotechnol 61(9):694–702

    CAS  Article  Google Scholar 

  26. Spalinskas R, Van den Bulcke M, Van den Eede G, Milcamps A (2013) LT-RADE: an efficient user-friendly genome walking method applied to the molecular characterization of the insertion site of genetically modified maize MON810 and rice LLRICE62. Food Anal Method 6(2):705–713

    Article  Google Scholar 

  27. Sun SL, Zhou YS, Chen J, Shi JP, Zhao HM, Hao HN, Song WB, Zhang M, Cui Y, Dong XM, Liu N, Ma XX, Jiao YP, Wang B, Wei XH, Stein JC, Glaubitz JC, Lu F, Yu GL, Fengler K, Li BL, Rafalski A, Schnable PS, Ware DH, Buckler ES, Lai JS (2018) Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Na Genet 50:1289–1295

    CAS  Article  Google Scholar 

  28. Wahler D, Schauser L, Bendiek J, Grohmann L (2013) Next-generation sequencing as a tool for detailed molecular characterisation of genomic insertions and flanking regions in genetically modified plants: a pilot study using a rice event unauthorised in the EU. Food Anal Methods 6(6):1718–1727

    Article  Google Scholar 

  29. Wang J, Wang W, Li YR, Tian G, Goodman L, Fan W, Zhang JQ, Li J, Zhang JB, Guo YR, Feng B, Li H, Lu Y, Fang X, Liang H, Du Z, Li D, Zhao Y, Hu Y, Yang Z, Zheng H, Hellmann I, Inouye M, Pool J, Yi X, Zhao J, Duan J, Zhou Y, Qin J, Ma L, Li G, Yang Z, Zhang G, Yang B, Yu C, Liang F, Li W, Li S, Li D, Ni P, Ruan J, Li Q, Zhu H, Liu D, Lu Z, Li N, Guo G, Zhang J, Ye J, Fang L, Hao Q, Chen Q, Liang Y, Su Y, San A, Ping C, Yang S, Chen F, Li L, Zhou K, Zheng H, Ren Y, Yang L, Gao Y, Yang G, Li Z, Feng X, Kristiansen K, Wong GK, Nielsen R, Durbin R, Bolund L, Zhang X, Li S, Yang H, Wang J (2008) The diploid genome sequence of an Asian individual. Nature 456(7218):60–65

    CAS  Article  Google Scholar 

  30. Wang M, Liu XX, Chang G, Chen YD, An G, Yan LY, Gao S, Xu YW, Cui YL, Dong J, Chen YH, Fan XY, Hu YQ, Song K, Zhu XH, Gao Y, Yao ZK, Bian SH, Hou Y, Lu JH, Wang R, Fan Y, Lian Y, Tang WH, Wang YP, Liu JQ, Zhan LM, Wang LY, Lou ZT, Yuan RP, Shi YJ, Hu BQ, Tang FC, Zhao XY, Qiao J (2019) Single-Cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell 23(4):599–614

    CAS  Article  Google Scholar 

  31. Williams-Carrier R, Stiffler N, Belcher S, Kroeger T, Stem DB, Monde RA, Coalter R, Barkan A (2010) Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy mutator lines of maize. Plant J 63(1):167

    CAS  PubMed  Google Scholar 

  32. Wilson AK, Latham JR, Steinbrecher RA (2006) Transformation-induced mutations in transgenic plants: Analysis and biosafety implications. Biotechnol Genet Eng Rev 23(1):209–238

    CAS  Article  Google Scholar 

  33. Windels P, Sylvie DB, Erik VB, De Loose M, Depicker A (2003) T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences. Plant Physiol 133(4):2061–2068

    CAS  Article  Google Scholar 

  34. Yang LT, Wang CM, Jensen AH, Morisset D, Lin YJ, Zhang DB (2013) Characterization of GM events by insert knowledge adapted re-sequencing approaches. Sci. Rep. 3:2839

    Article  Google Scholar 

  35. Yang XD, Niu L, Zhang W, He HL, Yang J, Xing GJ, Guo DQ, Du Q, Qian XY, Yao Y, Li QY, Dong YS (2017) Robust RNAi-mediated resistance to infection of seven potyvirids in soybean expressing an intron hairpin NIb RNA. Transgenic Res 26(5):665–676

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from China National Novel Transgenic Organisms Breeding Project (2016ZX08004-004). We would also like to thank Editage (www.editage.cn) for English language editing.

Author information

Affiliations

Authors

Contributions

XZ and XY designed the experiments and drafted the manuscript. LN and HH conducted the experiments and drafted the manuscript. Yuanyu Zhang analyzed the positions of inserted DNA. JY, GX, and HL grown soybean and other plant samples and collected them. All authors participated in manuscript revision.

Corresponding authors

Correspondence to Xiaofang Zhong or Xiangdong Yang.

Ethics declarations

Conflict of interest

The authors claim no conflict of interest in the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niu, L., He, H., Zhang, Y. et al. Efficient identification of genomic insertions and flanking regions through whole-genome sequencing in three transgenic soybean events. Transgenic Res 30, 1–9 (2021). https://doi.org/10.1007/s11248-020-00225-8

Download citation

Keywords

  • Insertion site
  • Flanking sequence
  • Whole-genome sequencing
  • Virus-resistant transgenic soybean
  • Event-specific detection