Application of genome editing in aquatic farm animals: Atlantic salmon


Gene editing offers opportunities to solve fish farming sustainability issues that presently hampers expansion of the aquaculture industry. In for example Atlantic salmon farming, there are now two major bottlenecks limiting the expansion of the industry. One is the genetic impact of escaped farmed salmon on wild populations, which is considered the most long-term negative effect on the environment. Secondly and the utmost acute problem is the fish parasite salmon lice, which is currently causing high lethality in wild salmonids due to high concentrations of the parasite in the sea owing to sea cage salmon farming. There are also sustainability issues associated with increased use of vegetable-based ingredients as replacements for marine products in fish feed. This transition comes at the expense of the omega-3 content both in fish feed and the fish filet of the farmed fish. Reduced fish welfare represents another obstacle, and robust farmed fish is needed to avoid negative stress associated phenotypes such as cataract, bone and fin deformities, precocious maturity and higher disease susceptibility. Gene editing could solve some of these problems as genetic traits can be altered positively to reach phenotype of interest such as for example disease resistance and increased omega-3 production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Betancor MB, Sprague M, Sayanova O, Usher S, Metochis C, Campbell PJ, Napier JA, Tocher DR (2016) Nutritional evaluation of an EPA-DHA oil from transgenic Camelina sativa in feeds for post-smolt atlantic salmon (Salmo salar L.). PLoS ONE 11(7):e0159934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chakrapani V, Patra SK, Panda RP, Rasal KD, Jayasankar P, Barman HK (2016) Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9. Dev Comp Immunol 61:242–247

    Article  CAS  PubMed  Google Scholar 

  3. Dong Z, Ge J, Li K, Xu Z, Liang D, Li J, Li J, Jia W, Li Y, Dong X, Cao S, Wang X, Pan J, Zhao Q (2011) Heritable targeted inactivation of myostatin gene in yellow catfish (Pelteobagrus fulvidraco) using engineered zinc finger nucleases. PLoS ONE 6(12):e28897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Du SJ, Gong ZY, Fletcher GL, Shears MA, King MJ, Idler DR, Hew CL (1992) Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. Biotechnology (NY) 10(2):176–181

    CAS  Google Scholar 

  5. Edvardsen RB, Leininger S, Kleppe L, Skaftnesmo KO, Wargelius A (2014) Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PLoS ONE 9(9):e108622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fang J, Chen T, Pan Q, Wang Q (2018) Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9. J Exp Zool B Mol Dev Evol 330(4):242–246

    Article  CAS  PubMed  Google Scholar 

  7. Khalil K, Elayat M, Khalifa E, Daghash S, Elaswad A, Miller M, Abdelrahman H, Ye Z, Odin R, Drescher D, Vo K, Gosh K, Bugg W, Robinson D, Dunham R (2017) Generation of myostatin gene-edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 system. Sci Rep 7:7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kleppe L, Andersson E, Skaftnesmo KO, Edvardsen RB, Fjelldal PG, Norberg B, Bogerd J, Schulz RW, Wargelius A (2017) Sex steroid production associated with puberty is absent in germ cell-free salmon. Sci Rep 7(1):12584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley DR, Zimin A, Grammes F, Grove H, Gjuvsland A, Walenz B, Hermansen RA, von Schalburg K, Rondeau EB, Di Genova A, Samy JK, Olav Vik J, Vigeland MD, Caler L, Grimholt U, Jentoft S, Vage DI, de Jong P, Moen T, Baranski M, Palti Y, Smith DR, Yorke JA, Nederbragt AJ, Tooming-Klunderud A, Jakobsen KS, Jiang X, Fan D, Hu Y, Liberles DA, Vidal R, Iturra P, Jones SJ, Jonassen I, Maass A, Omholt SW, Davidson WS (2016) The Atlantic salmon genome provides insights into rediploidization. Nature 533(7602):200–205

    Article  CAS  PubMed  Google Scholar 

  10. Ma J, Fan Y, Zhou Y, Liu W, Jiang N, Zhang J, Zeng L (2018) Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9. Fish Shellfish Immunol 76:206–215

    Article  CAS  PubMed  Google Scholar 

  11. Qin Z, Li Y, Su B, Cheng Q, Ye Z, Perera DA, Fobes M, Shang M, Dunham RA (2016) Editing of the luteinizing hormone gene to sterilize channel catfish, Ictalurus punctatus, using a modified zinc finger nuclease technology with electroporation. Mar Biotechnol (NY) 18(2):255–263

    Article  CAS  Google Scholar 

  12. Wargelius A, Leininger S, Skaftnesmo KO, Kleppe L, Andersson E, Taranger GL, Schulz RW, Edvardsen RB (2016) Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep 6:21284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhong Z, Niu P, Wang M, Huang G, Xu S, Sun Y, Xu X, Hou Y, Sun X, Yan Y, Wang H (2016) Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci Rep 6:22953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu B, Ge W (2018) Genome editing in fishes and their applications. Gen Comp Endocrinol 257:3–12

    Article  CAS  PubMed  Google Scholar 

Download references


The Research Council of Norway BIOTEK2021/HAVBRUK Projects; SALMAT (226221), SALMOSTERILE (221648) and MATGEN (254783).

Author information



Corresponding author

Correspondence to Anna Wargelius.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer: The opinions expressed and arguments employed in this paper are the sole responsibility of the author and do not necessarily reflect those of the OECD or of the governments of its Member countries.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wargelius, A. Application of genome editing in aquatic farm animals: Atlantic salmon. Transgenic Res 28, 101–105 (2019).

Download citation