Problem formulation and phenotypic characterisation for the development of novel crops

Abstract

Phenotypic characterisation provides important information about novel crops that helps their developers to make technical and commercial decisions. Phenotypic characterisation comprises two activities. Product characterisation checks that the novel crop has the qualities of a viable product—the intended traits have been introduced and work as expected, and no unintended changes have been made that will adversely affect the performance of the final product. Risk assessment evaluates whether the intended and unintended changes are likely to harm human health or the environment. Product characterisation follows the principles of problem formulation, namely that the characteristics required in the final product are defined and criteria to decide whether the novel crop will have these properties are set. The hypothesis that the novel crop meets the criteria are tested during product development. If the hypothesis is corroborated, development continues, and if the hypothesis is falsified, the product is redesigned or its development is halted. Risk assessment should follow the same principles. Criteria that indicate the crop poses unacceptable risk should be set, and the hypothesis that the crop does not possess those properties should be tested. However, risk assessment, particularly when considering unintended changes introduced by new plant breeding methods such as gene editing, often ignores these principles. Instead, phenotypic characterisation seeks to catalogue all unintended changes by profiling methods and then proceeds to work out whether any of the changes are important. This paper argues that profiling is an inefficient and ineffective method of phenotypic characterisation for risk assessment. It discusses reasons why profiling is favoured and corrects some misconceptions about problem formulation.

This is a preview of subscription content, access via your institution.

References

  1. Alba R, Phillips A, Mackie S, Gillikin N, Maxwell C, Brune P, Ridley W, Fitzpatrick J, Levine M, Harris S (2010) Improvements to the international life sciences institute crop composition database. J Food Compos Anal 23:741–748

    Article  Google Scholar 

  2. Arpaia S, Birch ANE, Kiss J, van Loon JJA, Messéan A, Nuti M, Perry JN, Sweet JB, Tebbe CC (2017) Assessing environmental impacts of genetically modified plants on non-target organisms: the relevance of in planta studies. Sci Total Environ 583:123–132

    Article  CAS  PubMed  Google Scholar 

  3. Ayala FJ (2009) Darwin and the scientific method. Proc Natl Acad Sci USA 106:10033–10039

    Article  PubMed  Google Scholar 

  4. Berkley SF, Hightower AW, Beier RC, Fleming DW, Brokopp CD, Ivie GW, Broome CV (1986) Dermatitis in grocery workers associated with high natural concentrations of furanocoumarins in celery. Ann Intern Med 105:351–355

    Article  CAS  PubMed  Google Scholar 

  5. Brunner H (1995) Radiation induced mutations for plant selection. Appl Radiat Isot 46:589–594

    Article  CAS  Google Scholar 

  6. Camire ME, Kubow S, Donnelly DJ (2009) Potatoes and human health. Crit Rev Food Sci Nutr 49:823–840

    Article  CAS  PubMed  Google Scholar 

  7. Cattivelli L, Rizza F, Badeck F-W, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105:1–14

    Article  Google Scholar 

  8. Cellini F, Chesson A, Colquhoun I, Constable A, Davies HV, Engel KH, Gatehouse AMR, Kärenlampi S, Kok EJ, Leguay J-J, Lehesranta S, Noteborn HPJM, Pedersen J, Smith M (2004) Unintended effects and their detection in genetically modified crops. Food Chem Toxicol 42:1089–1125

    Article  CAS  PubMed  Google Scholar 

  9. Chalmers AF (2013) What is this this thing called science?, 4th edn. Hackett Publishing, Indianapolis

    Google Scholar 

  10. Clarence E (2002) Technocracy reinvented: the new evidence based policy movement. Public Policy Adm 17:1–11

    Google Scholar 

  11. Cockram J, Jones H, Norris C, O’Sullivan DM (2012) Evaluation of diagnostic molecular markers for DUS phenotypic assessment in the cereal crop, barley (Hordeum vulgare ssp. vulgare L.). Theor Appl Genet 125:1735–1749

    Article  CAS  PubMed  Google Scholar 

  12. Cox TS, Shroyer JP, Ben-Hui L, Sears RG, Martin TJ (1987) Genetic Improvement in agronomic traits of hard red winter wheat cultivars 1919 to 1987. Crop Sci 28:756–760

    Article  Google Scholar 

  13. Davies H (2010) A role for “omics” technologies in food safety assessment. Food Control 21:1601–1610

    Article  Google Scholar 

  14. Deikman J, Petracek M, Heard JE (2012) Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Curr Opin Biotechnol 23:243–250

    Article  CAS  PubMed  Google Scholar 

  15. Devos Y, Sanvido O, Tait J, Raybould A (2014) Towards a more open debate about values in decision-making on agricultural biotechnology. Transgenic Res 23:933–943

    Article  CAS  PubMed  Google Scholar 

  16. Devos Y, Ortiz-García S, Hokanson KE, Raybould A (2018) Teosinte and maize × teosinte hybrid plants in Europe—environmental risk assessment and management implications for genetically modified maize. Agric Ecosyst Environ 259:19–27

    Article  Google Scholar 

  17. Ellstrand NC, Heredia SM, Leak-Garcia JA, Heraty JM, Burger JC, Yao L, Nohzadeh-Malakshah S, Ridley CE (2010) Crops gone wild: evolution of weeds and invasives from domesticated ancestors. Evol Appl 3:494–504

    Article  PubMed  PubMed Central  Google Scholar 

  18. Evans J, Wood G, Miller A (2006) The risk assessment—policy gap: an example from the UK contaminated land regime. Environ Int 32:1066–1071

    Article  PubMed  Google Scholar 

  19. Francis D, Finer JJ, Grotewold E (2017) Challenges and opportunities for improving food quality and nutrition through plant biotechnology. Curr Opin Biotechnol 44:124–129

    Article  CAS  PubMed  Google Scholar 

  20. Garcia-Alonso M, Raybould A (2014) Protection goals in environmental risk assessment: a practical approach. Transgenic Res 23:945–956

    Article  CAS  PubMed  Google Scholar 

  21. Garcia-Alonso M, Jacobs E, Raybould A, Nickson TE, Sowig P, Willekens H, Van der Kouwe P, Layton R, Amijee F, Fuentes A, Tencalla F (2006) Assessing the risk of genetically modified plants to non-target organisms. Environ Biosaf Res 5:57–65

    Article  Google Scholar 

  22. García-Cañas V, Simó C, León C, Ibáñez E, Cifuentes A (2011) MS-based analytical methodologies to characterize genetically modified crops. Mass Spectrom Rev 30:396–416

    Article  CAS  PubMed  Google Scholar 

  23. Gressel J (ed) (2004) Crop ferality and volunteerism. CRC Press, Boca Raton

    Google Scholar 

  24. Gunningham N, Rees J (1997) Industry self-regulation: an institutional perspective. Law Policy 19:363–414

    Article  Google Scholar 

  25. Hahn R (1965) Reflections on the history of science. J Hist Philos 3:235–242

    Article  Google Scholar 

  26. Hallauer AR, Russell WA, Lamkey KR (1988) Corn breeding. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 463–564

    Google Scholar 

  27. Head G, Brown CR, Groth ME, Duan JJ (2001) Cry1Ab protein levels in phytophagous insects feeding on transgenic corn: implications for secondary exposure risk assessment. Entomol Exp Appl 99:37–45

    Article  CAS  Google Scholar 

  28. Herring R, Paarlberg R (2016) The political economy of biotechnology. Ann Rev Resour Econ 8:397–416

    Article  Google Scholar 

  29. Hill RA, Sendashonga C (2003) General principles for risk assessment of living modified organisms: lessons from chemical risk assessment. Environ Biosaf Res 2:81–88

    Article  Google Scholar 

  30. Horak MJ, Rosenbaum EW, Kendrick DL, Sammons B, Phillips SL, Nickson TE, Dobert RC, Perez T (2015) Plant characterisation of Roundup Ready 2 Yield® soybean, MON 89788, for use in ecological risk assessment. Transgenic Res 24:213–225

    Article  CAS  PubMed  Google Scholar 

  31. Jahangir M, Kim HK, Choi YH, Verpoorte R (2009) Health-affecting compounds in Brassicaceae. Comp rev Food Sci Food Saf 8:31–43

    Article  CAS  Google Scholar 

  32. Jasanoff S, Hurlbut JB (2018) A global observatory for gene editing. Nature 555:435–437

    Article  CAS  PubMed  Google Scholar 

  33. Kell DB, Oliver SG (2004) Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26:99–105

    Article  PubMed  Google Scholar 

  34. Khush GS (1987) Rice breeding: past and present. J Genet 66:195–216

    Article  Google Scholar 

  35. Kok EJ, Kuiper HA (2003) Comparative safety assessment for biotech crops. Trends Biotechnol 21:439–444

    Article  CAS  PubMed  Google Scholar 

  36. Kok EJ, Keijer J, Kleter GA, Kuiper HA (2008) Comparative safety assessment of plant-derived foods. Regul Toxicol Pharmacol 50:98–113

    Article  CAS  PubMed  Google Scholar 

  37. Kuiper HA, Kok EJ, Engel K-H (2003) Exploitation of molecular profiling techniques for GM food safety assessment. Curr Opin Biotechnol 14:238–243

    Article  CAS  PubMed  Google Scholar 

  38. Kupferschmidt K (2018) EU verdict on CRISP crops dismays scientists. Science 361:435–436

    CAS  PubMed  Google Scholar 

  39. Lantin R (1998) Hume and the problem of induction. Philosophia 26:105–107

    Article  Google Scholar 

  40. Li R, Quan S, Yan X, Biswas S, Zhang D, Shi J (2017) Molecular characterization of genetically-modified crops: challenges and strategies. Biotechnol Adv 13:1082–1088

    Google Scholar 

  41. Madsen KH, Holm PB, Lassen J, Sandøe P (2002) Ranking genetically modified plants according to familiarity. J Agric Environ Ethics 15:267–278

    Article  Google Scholar 

  42. Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566

    Article  PubMed  Google Scholar 

  43. Morrison MJ, Voldeng HD, Cober ER (2000) Agronomic changes from 58 years of genetic improvement of short-season soybeans in Canada. Agron J 92:780–784

    Article  Google Scholar 

  44. Myhr AI (2010) A precautionary approach to genetically modified organisms: challenges and implications for policy and science. J Agric Environ Ethics 23:501–525

    Article  Google Scholar 

  45. NASEM (National Academies of Sciences, Engineering, and Medicine) (2016) Genetically engineered crops: experiences and prospects. National Academies Press, Washington

    Google Scholar 

  46. Nickson TE (2008) Planning environmental risk assessment for genetically modified crops: problem formulation for stress tolerant crops. Plant Physiol 147:494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Niiniluoto I (1993) The aim and structure of applied research. Erkenntnis 38:1–21

    Article  Google Scholar 

  48. Niiniluoto I (1994) Approximation in applied science. In: Kuokkanen M (ed) Idealization VII: structuralism, idealization and approximation. Rodopi, Amsterdam, pp 127–139

    Google Scholar 

  49. Novak WK, Haslberger AG (2000) Substantial equivalence of antinutrients and inherent plant toxins in genetically modified novel foods. Food Chem Toxicol 38:473–483

    Article  CAS  PubMed  Google Scholar 

  50. Ory RL (ed) (1981) Antinutrients and natural toxicants in food. Food & Nutrition Press, Wesport

    Google Scholar 

  51. Pacher M, Puchta H (2017) From classical mutagenesis to nuclease-based breeding—directing natural DNA repair for a natural end-product. Plant J 90:819–833

    Article  CAS  PubMed  Google Scholar 

  52. Perry JN, ter Braak CJF, Dixon PM, Duan JJ, Hails RS, Huesken A, Lavielle M, Marvier M, Scardi M, Schmidt K, Tothmeresz B, Schaarschmidt F, van der Voet H (2009) Statistical aspects of environmental risk assessment of GM plants for effects on non-target organisms. Environ Biosaf Res 8:65–78

    Article  Google Scholar 

  53. Phelan SE (2001) What is complexity science really? Emergence 3:120–136

    Article  Google Scholar 

  54. Popper KR (1979) Objective knowledge: an evolutionary approach, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  55. Prado JR, Segers G, Voelker T, Carson D, Dobert R, Phillips J, Cook K, Cornejo C, Monken J, Grapes L, Reynolds T, Martino-Catt S (2014) Genetically engineered crops from idea to product. Annu Rev Plant Biol 65:769–790

    Article  CAS  PubMed  Google Scholar 

  56. Rayan AM, Abbott LC (2015) Compositional analysis of genetically modified corn events (NK603, MON88017 × MON810 and MON89034 × MON88017) compared to conventional corn. Food Chem 176:99–105

    Article  CAS  PubMed  Google Scholar 

  57. Raybould A (2006) Problem formulation and hypothesis testing for environmental risk assessments of genetically modified crops. Environ Biosafety Res 5:119–125

    Article  PubMed  Google Scholar 

  58. Raybould A (2010) Reducing uncertainty in regulatory decision-making for transgenic crops: more ecological research or clearer environmental risk assessment? GM Crops 1:25–31

    Article  PubMed  Google Scholar 

  59. Raybould A, Macdonald P (2018) Policy-led comparative environmental risk assessment of genetically modified crops: testing for increased risk rather than profiling phenotypes leads to predictable and transparent decision-making. Front Bioeng Biotechnol 6(43):1–7

    Google Scholar 

  60. Ricroch A, Bergé JB, Kuntz M (2011) Evaluation of genetically engineer crops using transcriptomic, proteomic and metabolic profiling techniques. Plant Physiol 155:1752–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ridley WP, Shillito RD, Coats I, Steiner H-Y, Shawgo M, Phillip A, Dussold P, Kurtyka L (2004) Development of the international life science institute crop composition database. J Food Compos Anal 17:423–438

    Article  CAS  Google Scholar 

  62. Romeis J, Bartsch D, Bigler F, Candolfi MP, Gielkens MMC, Hartley SE, Hellmich RL, Huesing JE, Jepson PC, Layton R, Quemada H, Raybould A, Rose RI, Schiemann J, Sears MK, Shelton AM, Sweet J, Vaituzis Z, Wolt JD (2008) Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 26:203–208

    Article  CAS  PubMed  Google Scholar 

  63. Sang JP, Salisbury PA (1988) Glucosinolate profiles of international rapeseed lines (Brassica napus and Brassica campestris). J Sci Food Agric 45:255–261

    Article  CAS  Google Scholar 

  64. Sanvido O, Romeis J, Gathmann A, Gielkens M, Raybould A, Bigler F (2012) Evaluating environmental risks of genetically modified crops—ecological harm criteria for regulatory decision-making. Environ Sci Pol 15:82–91

    Article  Google Scholar 

  65. Schaart JG, van der Wiel CCM, Lotz LAP, Smulders MJM (2016) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21:438–449

    Article  CAS  PubMed  Google Scholar 

  66. Stephens PA, Buskirk SW, del Rio CM (2007) Inference in ecology and evolution. Trends Ecol Evol 22:192–197

    Article  PubMed  Google Scholar 

  67. Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:R770–R783

    Article  CAS  PubMed  Google Scholar 

  68. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  69. Thornton S (2018) Karl Popper. In: Zalta EN (ed) The Stanford Encyclopedia of Philosophy (Fall 2018 Edition). https://plato.stanford.edu/archives/fall2018/entries/popper

  70. US EPA (United States Environmental Protection Agency) (2007) Biopesticides registration action document. Modified Cry3A protein and the genetic material necessary for its production (via elements of pZM26) in Event MIR604 corn SYN-IR604-8. https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-006509_1-Mar-07.pdf. Accessed 11 Oct 2018

  71. van der Voet H, Perry JN, Amzal B, Paoletti C (2011) A statistical assessment of differences and equivalences between genetically modified and reference plant varieties. BMC Biotechnol 11(15):1–20

    Google Scholar 

  72. Vitashev S, Schwartz C, Lenderts B, Young JK, Cigan AM (2016) Genome editing in maize directed by CRISP-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    Article  CAS  Google Scholar 

  73. Vlaanderen J, Moore LE, Smith MT, Lan Q, Zhang L, Skibola CF, Rothman N, Vermeulen R (2010) Application of omics technologies in occupational and environmental health research; current status and projections. Occup Environ Med 67:136–143

    Article  CAS  PubMed  Google Scholar 

  74. Wolt JD (2017) Safety, security, and policy considerations for plant genome editing. Prog Mol Biol Transl Sci 149:215–241

    Article  PubMed  Google Scholar 

  75. Wunderlich S, Gatto KA (2015) Consumer perception of genetically modified organisms and sources of information. Adv Nutr 6:842–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wynne B (2001) Creating public alienation: expert cultures of risk and ethics on GMOs. Sci Cult (Lond) 10:445–481

    Article  CAS  Google Scholar 

  77. Xu Y, Crouch JH (2008) Marker assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  78. Yin K, Gao C, Qiu J-L (2017) Progress and prospects in plant genome editing. Nat Plants 3(17107):1–6

    Google Scholar 

  79. Zamir D (2001) Improving plant breeding with exotic gene libraries. Nat Rev Genet 2:983–989

    Article  CAS  PubMed  Google Scholar 

  80. Zeller SL, Kalinina O, Brunner S, Keller B, Schmidt B (2010) Transgene × environment interactions in genetically modified wheat. PLoS ONE 5:e1140

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alan Raybould.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer: The opinions expressed and arguments employed in this paper are the sole responsibility of the author and do not necessarily reflect those of the OECD or of the governments of its Member countries.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raybould, A. Problem formulation and phenotypic characterisation for the development of novel crops. Transgenic Res 28, 135–145 (2019). https://doi.org/10.1007/s11248-019-00147-0

Download citation

Keywords

  • Hypothesis testing
  • Decision-making
  • Product characterisation
  • Risk assessment
  • Plant breeding
  • Profiling