Application of genome editing in farm animals: cattle

Abstract

Milk and meat from cattle and buffaloes contribute 45% of the global animal protein supply, followed by chickens (31%), and pigs (20%). In 2016, the global cattle population of 1.0 billion head produced 6.5 billion tons of cows’ milk, and 66 million tons of beef. In the past century, cattle breeding programs have greatly increased the yield per animal with a resultant decrease in the emissions intensity per unit of milk or beef, but this has not been true in all regions. Genome editing research in cattle to date has focused on disease resistance (e.g. tuberculosis), production (e.g. myostatin knockout; production of all-male offspring), elimination of allergens (e.g. beta-lactoglobulin knockout) and welfare (e.g. polled or hornlessness) traits. Modeling has revealed how the use of genome editing to introduce beneficial alleles into cattle breeds could maintain or even accelerate the rate of genetic gain accomplished by conventional breeding programs, and is a superior approach to the lengthy process of introgressing those same alleles from distant breeds. Genome editing could be used to precisely introduce useful alleles (e.g. heat tolerance, disease resistance) and haplotypes into native locally-adapted cattle breeds, thereby helping to improve their productivity. As with earlier genetic engineering approaches, whether breeders will be able to employ genome editing in cattle genetic improvement programs will very much depend upon global decisions around the regulatory framework and governance of genome editing for food animals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working Paper No. 12–03. Rome, FAO

  2. Bevacqua RJ, Fernandez-Martín R, Savy V, Canel NG, Gismondi MI, Kues WA, Carlson DF, Fahrenkrug SC, Niemann H, Taboga OA, Ferraris S, Salamone DF (2016) Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology 86(8): 1886–1896. https://doi.org/10.1016/j.theriogenology.2016.06.010

    Article  CAS  PubMed  Google Scholar 

  3. Britt JH, Cushman RA, Dechow CD, Dobson H, Humblot P, Hutjens MF, Jones GA, Ruegg PS, Sheldon IM, Stevenson JS (2018) Invited review: learning from the future-a vision for dairy farms and cows in 2067. J Dairy Sci 101:3722–3741

    Article  CAS  PubMed  Google Scholar 

  4. Capper JL, Bauman DE (2013) The role of productivity in improving the environmental sustainability of ruminant production systems. Annu Rev Anim Biosci 1:469–489. https://doi.org/10.1146/annurev-animal-031412-103727

    Article  PubMed  Google Scholar 

  5. Carroll D, Van Eenennaam AL, Taylor JF, Seger J, Voytas DF (2016) Regulate genome-edited products, not genome editing itself. Nat Biotech 34:477–479

    Article  CAS  Google Scholar 

  6. Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC (2016) Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 34(5):479–481. https://doi.org/10.1038/nbt.3560

    Article  CAS  PubMed  Google Scholar 

  7. Casas E, White SN, Wheeler TL, Shackelford SD, Koohmaraie M, Riley DG, Chase CC Jr, Johnson DD, Smith TP (2006) Effects of calpastatin and micro-calpain markers in beef cattle on tenderness traits. J Anim Sci 84(3):520–525

    Article  CAS  PubMed  Google Scholar 

  8. Daetwyler HD, Capitan A, Pausch H et al (2014) Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat Genet 46:858–865. https://doi.org/10.1038/ng.3034 (Crossref, Medline, Google Scholar)

    Article  CAS  PubMed  Google Scholar 

  9. Dikmen S, Khan FA, Huson HJ, Sonstegard TS, Moss JI, Dahl GE, Hansen PJ (2014) The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. J Dairy Sci 9:5508–5520

    Article  CAS  Google Scholar 

  10. Food and Agriculture Organization of the United Nations (FAO) (2010) Greenhouse gas emissions from the dairy sector: A life cycle assessment. Rome, Italy. Available at. http://www.fao.org/docrep/012/k7930e/k7930e00.pdf

  11. Food and Agriculture Organization of the United Nations (FAO) (2018) FAO statistical yearbook 2017. http://www.fao.org/faostat/en/#data/QL. Accessed 27 February 2018

  12. Food and Agriculture Organization of the United Nations (FAO) and World Bank (2009) Awakening Africa’s sleeping giant. Prospects for commercial agriculture in the guinea savannah zone and beyond, (World Bank, Washington, DC; Food and Agriculture Organization, Rome)

  13. Food and Drug Administration (2017) Draft Guidance for Industry (187): regulation of intentionally altered genomic DNA in animals. https://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM113903. pdf last. Accessed 12 December 2017.Google Scholar

  14. Gao Y, Wu H, Wang Y, Liu X, Chen L, Li Q et al (2017) Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol 18(1):13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ideta A, Yamashita S, Seki-Soma M, Yamaguchi R, Chiba S, Komaki H, Ito T, Konishi M, Aoyagi Y, Sendai Y (2016) Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle. Sci Rep 6:24983. https://doi.org/10.1038/srep24983

    Article  CAS  Google Scholar 

  16. Jenko J et al (2015) Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genet Sel Evol 47:1–14

    Article  CAS  Google Scholar 

  17. Harland C, Charlier C, Karim L, et al. (2017) Frequency of mosaicism points towards mutation-prone early cleavage cell divisions. BioRxiv. https://doi.org/10.1101/079863

  18. Kasinathan P, Wei H, Xiang T, Molina JA, Metzger J, Broek D, Kasinathan S, Faber DC, Allan MF (2015) Acceleration of genetic gain in cattle by reduction of generation interval. Sci Rep 5:8674. https://doi.org/10.1038/srep08674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y (2013) Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun 4:2565. https://doi.org/10.1038/ncomms3565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z, Quan F, Zhang Y (2014) Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proc Biol Sci 281(1780):20133368. https://doi.org/10.1098/rspb.2013.3368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mottet A, Tempio G (2017) Global poultry production: current state and future outlook and challenges. World’s Poult Sci J 73(2):245–256. https://doi.org/10.1017/S0043933917000071

    Article  Google Scholar 

  22. Mottet A, de Haan C, Falcucci A, Tempio G, Opio C, Gerber P (2017) Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Global Food Secur 14:1–8. https://doi.org/10.1016/j.gfs.2017.01.001

    Article  Google Scholar 

  23. OECD/FAO (2012) OECD-FAO agricultural outlook 2017-2026. OECD Publishing, Paris

    Google Scholar 

  24. Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham AJ, McLaren DG, Whitelaw CB, Fahrenkrug SC (2015) Genome edited sheep and cattle. Transgenic Res 24(1):147–153. https://doi.org/10.1007/s11248-014-9832-x

    Article  CAS  PubMed  Google Scholar 

  25. Porto-Neto LR, Bickhart DM, Landaeta-Hernandez AJ, Utsunomiya YT, Pagan M, Jimenez E, Hansen PJ, Dikmen S, Schroeder SG, Kim ES, Sun J, Crespo E, Amati N, Cole JB, Null DJ, Garcia JF, Reverter A, Barendse W, Sonstegard TS (2018) Convergent evolution of slick coat in cattle through truncation mutations in the prolactin receptor. Front Genet 23(9):57. https://doi.org/10.3389/fgene.2018.00057

    Article  CAS  Google Scholar 

  26. Shanthalingam S, Tibary A, Beever JE, Kasinathan P, Brown WC, Srikumaran S (2016) Precise gene editing paves the way for derivation of Mannheimia haemolytica leukotoxin-resistant cattle. Proc Natl Acad Sci USA 113(46):13186–13190

    Article  CAS  PubMed  Google Scholar 

  27. Van Eenennaam AL (2017) Genetic modification of food animals. Curr Opin Biotechnol 44:27–34

    Article  CAS  PubMed  Google Scholar 

  28. Van Eenennaam AL (2018) The importance of a novel product risk-based trigger for gene-editing regulation in food animal species. CRISPR J 1:101–106. https://doi.org/10.1089/crispr.2017.0023

    Article  PubMed  Google Scholar 

  29. Whelan AI, Lema MA (2015) Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops Food 6:253–265. https://doi.org/10.1080/21645698.2015.1114698

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu H, Wang Y, Zhang Y, Yang M, Lv J, Liu J et al (2015) TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci 112(13):E1530–E1539

    Article  CAS  PubMed  Google Scholar 

  31. Yu S, Luo J, Song Z, Ding F, Dai Y, Li N (2011) Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res 21:1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author acknowledges funding support from the National Institute of Food and Agriculture and the Biotechnology Risk Assessment Grant (BRAG) program, U.S. Department of Agriculture, under award numbers 2013-68004-20364, 2015-67015-23316, 2015-33522-24106 and 2017-33522-27097.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alison L. Van Eenennaam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer: The opinions expressed and arguments employed in this paper are the sole responsibility of the author and do not necessarily reflect those of the OECD or of the governments of its Member countries.

This paper was given at the OECD Conference on Genome Editing: Applications in Agriculture—Implications for Health, Environment and Regulation which took place at the OECD on 28 and 29 June, and which was sponsored by the OECD Co‐operative Research Programme: Biological Resource Management for Sustainable Agricultural Systems whose financial support made it possible for the author to participate in the conference.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van Eenennaam, A.L. Application of genome editing in farm animals: cattle. Transgenic Res 28, 93–100 (2019). https://doi.org/10.1007/s11248-019-00141-6

Download citation