Potential benefits of gene editing for the future of poultry farming

Abstract

The chicken is an exemplar of efficient intensive animal agriculture and provides two valuable food products, chicken meat and eggs. Only aquaculture is better, by efficiency, but poultry is still top, by mass of animal protein produced as food in the global context. However this efficiency and intensive production comes with a number of challenges. Though the genetics of selective breeding have led to dramatic improvements in yield, efficiency and product quality, traits that relate to disease and welfare outcomes have not been so tractable. These two issues are major impacts to the industry in terms of production and in terms of public perception. Both transgenic technology and genome editing have clear potential for impact in these two important areas. The reproductive biology of birds requires techniques very specific to birds to achieve heritable (germline) edited traits. These are quite involved and, even though they are now well-defined and reliable, there is room for improvement and advances can be expected in the future. Currently the key targets for this technology are modifying chicken genes involved in virus-receptor interactions and cellular response involved in infection. For the egg industry the technology is being applied to the issue of sex-selection for layer hens (and the removal of males), removal of allergens from egg white and the tailoring of eggs system to enhance the yield of influenza vaccine doses. Regulation and trading of the animals generated, and resulting food products, will significantly impact the value and future development of genome editing for poultry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG, Tan W, Penheiter SG, Ma AC, Leung AY, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC (2012) In vivo genome editing using a high efficiency TALEN system. Nature 491:114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burkard C, Opriessnig T, Mileham AJ, Stadejek T, Ait-Ali T, Lillico SG, Whitelaw CBA, Archibald AL (2018) Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection. J Virol 92:e00415-18. https://doi.org/10.1128/JVI.00415-18

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232

    Article  CAS  PubMed  Google Scholar 

  4. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cooper CA, Challagulla A, Jenkins KA, Wise TG, O’Neil TE, Morris KR, Tizard ML, Doran TJ (2017) Generation of gene edited birds in one generation using sperm transfection assisted gene editing (STAGE). Transgenic Res 26:331–347. https://doi.org/10.1007/s11248-016-0003-0

    Article  CAS  PubMed  Google Scholar 

  6. Dhanapala P, Withanage-Dona D, Tang ML, Doran T, Suphioglu C (2017) Hypoallergenic variant of the major egg white allergen Gal d 1 produced by disruption of cysteine bridges. Nutrients 9:171–182. https://doi.org/10.3390/nu9020171

    Article  CAS  PubMed Central  Google Scholar 

  7. Dimitrov L, Pedersen D, Ching KH, Yi H, Collarini EJ, Izquierdo S, van de Lavoir MC, Leighton PA (2016) Germline gene editing in chickens by efficient CRISPR-mediated homologous recombination in primordial germ cells. PLoS ONE 11:e0154303. https://doi.org/10.1371/journal.pone.0154303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doran TJ, Cooper CA, Jenkins KA, Tizard ML (2016) Advances in genetic engineering of the avian genome: “realising the promise”. Transgenic Res 25:307–319. https://doi.org/10.1007/s11248-016-9926-8

    Article  CAS  PubMed  Google Scholar 

  9. Guan X, Zhang Y, Yu M, Ren C, Gao Y, Yun B, Liu Y, Wang Y, Qi X, Liu C, Cui H, Zhang Y, Gao L, Li K, Pan Q, Zhang B, Wang X, Gao Y (2017) Residues 28 to 39 of the extracellular loop 1 of chicken Na+/H+ exchanger type I mediate cell binding and entry of subgroup J avian leukosis virus. J Virol 92(1):e01627-17. https://doi.org/10.1128/JVI.01627-17

    Article  PubMed  PubMed Central  Google Scholar 

  10. International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    Article  CAS  Google Scholar 

  11. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oishi I, Yoshii K, Miyahara D, Kagami H, Tagami T (2016) Targeted mutagenesis in chicken using CRISPR/Cas9 system. Sci Rep 6:23980. https://doi.org/10.1038/srep23980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park TS, Lee HJ, Kim KH, Kim JS, Han JY (2014) Targeted gene knockout in chickens mediated by TALENs. PNAS 111:12716–12721

    Article  CAS  PubMed  Google Scholar 

  14. Tallentire CW, Leinonen I, Kyriazakis I (2016) Breeding for efficiency in the broiler chicken: a review. Agron Sustain Develop 33:66–82. https://doi.org/10.1007/s13593-016-0398-2

    Article  Google Scholar 

  15. Tanaka K, Wada T, Koga O, Nishio Y, Hertelendy F (1994) Chick production by in vitro fertilization of the fowl ovum. J Reprod Fertil 100:447–449

    Article  CAS  PubMed  Google Scholar 

  16. Taylor L, Carlson DF, Nandi S, Sherman A, Fahrenkrug SC, McGrew MJ (2017) Efficient TALEN-mediated gene targeting of chicken primordial germ cells. Development 144:928–934. https://doi.org/10.1242/dev.145367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tizard M, Hallerman E, Fahrenkrug S, Newell-McGloughlin M, Gibson J, de Loos F, Wagner S, Laible G, Han JY, D’Occhio M, Kelly L, Lowenthal J, Gobius K, Silva P, Cooper C, Doran T (2016) Strategies to enable the adoption of animal biotechnology to sustainably improve global food safety and security. Transgenic Res 25:575–595. https://doi.org/10.1007/s11248-016-9965-1

    Article  CAS  PubMed  Google Scholar 

  18. Tyack SG, Jenkins KA, O’Neil TE, Wise TG, Morris KR, Bruce MP, McLeod S, Wade AJ, McKay J, Moore RJ, Schat KA, Lowenthal JW, Doran TJ (2013) A new method for producing transgenic birds via direct in vivo transfection of primordial germ cells. Transgenic Res 22:1257–1264

    Article  CAS  PubMed  Google Scholar 

  19. van de Lavoir MC, Diamond JH, Leighton PA, Mather-Love C, Heyer BS, Bradshaw R, Kerchner A, Hooi LT, Gessaro TM, Swanberg SE, Delany ME, Etches RJ (2006) Germline transmission of genetically modified primordial germ cells. Nature 441:766–769

    Article  CAS  PubMed  Google Scholar 

  20. Warren WC, Hillier LW, Tomlinson C, Minx P, Kremitzki M, Graves T, Markovic C, Bouk N, Pruitt KD, Thibaud-Nissen F, Schneider V, Mansour TA, Brown CT, Zimin A, Hawken R, Abrahamsen M, Pyrkosz AB, Morisson M, Fillon V, Vignal A, Chow W, Howe K, Fulton JE, Miller MM, Lovell P, Mello CV, Wirthlin M, Mason AS, Kuo R, Burt DW, Dodgson JB, Cheng HH (2017) A new chicken genome assembly provides insight into avian genome structure. G3 (Bethesda)(7):109–117. https://doi.org/10.1534/g3.116.035923

    CAS  Article  Google Scholar 

  21. Woodcock ME, Idoko-Akoh, McGrew MJ (2017) Gene editing in birds takes flight. Mamm Genome 28(7–8):315–323. https://doi.org/10.1007/s00335-017-9701-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark L. Tizard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer: The opinions expressed and arguments employed in this paper are the sole responsibility of the authors and do not necessarily reflect those of the OECD or of the governments of its Member countries.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tizard, M.L., Jenkins, K.A., Cooper, C.A. et al. Potential benefits of gene editing for the future of poultry farming. Transgenic Res 28, 87–92 (2019). https://doi.org/10.1007/s11248-019-00139-0

Download citation

Keywords

  • Poultry
  • Gene editing
  • CRISPR
  • Regulation