The global need for plant breeding innovation

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Andersson M, Turesson H et al (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36(1):117–128. https://doi.org/10.1007/s00299-016-2062-3

    Article  CAS  PubMed  Google Scholar 

  2. Chandrasekaran J, Brumin M (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153. https://doi.org/10.1111/mpp.12375

    Article  CAS  PubMed  Google Scholar 

  3. Duan Y-B, Li J et al (2016) Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol Biol 90:49–62. https://doi.org/10.1007/s11103-015-0393-z

    Article  CAS  PubMed  Google Scholar 

  4. DuPont pioneer announces intentions to commercialize first CRISPR-Cas product https://www.pioneer.com/home/site/about/news-media/news-releases/template.CONTENT/guid.1DB8FB71-1117-9A56-E0B6-3EA6F85AAE92

  5. International Seed Federation (2018) Plant breeding innovation: consistent criteria for the scope of regulatory oversight http://www.worldseed.org/wp-content/uploads/2018/06/Plant-breeding-innovation-Consistent-criteria-for-the-scope-of-regulatory-oversight.pdf. Accessed June 2018

  6. Jiang WZ, Henry IM (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15:648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kohl C, Modrzejewski D et al (2018) Übersicht über Nutz- und Zierpflanzen, die mittels Gentechnik und neuer molekularbiologischer Techniken für die Bereiche Ernährung, Landwirtschaft, Gartenbau, Arzneimittelherstellung und -forschung entwickelt werden. https://www.bmel.de/SharedDocs/Downloads/Landwirtschaft/Pflanze/GrueneGentechnik/NMT_Stand-Regulierung_Anlage4.pdf;jsessionid=DE31BB0A5432A1E3468B35218D061691.1_cid367?__blob=publicationFile. Accessed Aug 2018

  8. Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123. https://doi.org/10.3389/fpls2016.01123

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sanchez-Leon S, Gil-Humanes J et al (2018) Barro1 Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902–910

    Article  CAS  PubMed  Google Scholar 

  10. Scientific Advice Mechanism (SAM) (2018) New techniques in agricultural biotechnology https://ec.europa.eu/research/sam/pdf/topics/explanatory_note_new_techniques_agricultural_biotechnology.pdf#view=fit&pagemode=none. Accessed Mar 2017

  11. Shi J, Gao H et al (2016) ARGOS8 variants generated by CRISPR–Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216. https://doi.org/10.1111/pbi.12603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293. https://doi.org/10.1038/nature.2016.19754

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Petra Jorasch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer: The opinions expressed and arguments employed in this paper are the sole responsibility of the author and do not necessarily reflect those of the OECD or of the governments of its Member countries.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jorasch, P. The global need for plant breeding innovation. Transgenic Res 28, 81–86 (2019). https://doi.org/10.1007/s11248-019-00138-1

Download citation