Skip to main content
Log in

Host-induced silencing of Mi-msp-1 confers resistance to root-knot nematode Meloidogyne incognita in eggplant

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

RNA interference (RNAi)-based host-induced gene silencing (HIGS) is emerging as a novel, efficient and target-specific tool to combat phytonematode infection in crop plants. Mi-msp-1, an effector gene expressed in the subventral pharyngeal gland cells of Meloidogyne incognita plays an important role in the parasitic process. Mi-msp-1 effector is conserved in few of the species of root-knot nematodes (RKNs) and does not share considerable homology with the other phytonematodes, thereby making it a suitable target for HIGS with minimal off-target effects. Six putative eggplant transformants harbouring a single copy RNAi transgene of Mi-msp-1 was generated. Stable expression of the transgene was detected in T1, T2 and T3 transgenic lines for which a detrimental effect on RKN penetration, development and reproduction was documented upon challenge infection with nematode juveniles. The post-parasitic nematode stages extracted from the transgenic plants showed long-term RNAi effect in terms of targeted downregulation of Mi-msp-1. These findings suggest that HIGS of Mi-msp-1 enhances nematode resistance in eggplant and protect the plant against RKN parasitism at very early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atkinson HJ, Lilley CJ, Urwin PE (2012) Strategies for transgenic nematode control in developed and developing world crops. Curr Opin Biotechnol 23:251–256

    Article  CAS  PubMed  Google Scholar 

  • Charlton WL, Harel HYM, Bakhetia M, Hibbard JK, Atkinson HJ, McPherson MJ (2010) Additive effects of plant expressed double-stranded RNAs on root-knot nematode development. Int J Parasitol 40:855–864

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary S, Dutta TK, Shivakumara TN, Rao U (2019) RNAi of an esophageal gland specific Mi-msp-1 gene alters the early stage infection behaviour of root-knot nematode, Meloidogyne Incognita. J Gen Plant Pathol. https://doi.org/10.1007/s10327-019-00837-x

    Article  Google Scholar 

  • Danchin EGJ, Arguel MJ, Campan-Fournier A, Perfus-Barbeoch L, Magliano M, Rosso M-N et al (2013) Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining. Plos Pathogen 9:e1003745

    Article  CAS  Google Scholar 

  • de Souza Júnior JDA, Coelho RR, Lourenço IT, da Rocha Fragoso R, Viana AAB, de Macedo LLP et al (2013) Knocking-down Meloidogyne incognita proteases by plant-delivered dsRNA has negative pleiotropic effect on nematode vigor. PLoS One 8:e85364

    Article  CAS  Google Scholar 

  • Ding X, Shields J, Allen R, Hussey R (2000) Molecular cloning and characterisation of a venom allergen AG5-like cDNA from Meloidogyne incognita. Int J Parasitol 30:77–81

    Article  CAS  PubMed  Google Scholar 

  • Dinh PT, Zhang L, Brown CR, Elling AA (2014) Plant-mediated RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in diverse genetic backgrounds of potato and reduces pathogenicity of nematode offspring. Nematology 16:669–682

    Article  CAS  Google Scholar 

  • Duarte A, Maleita C, Egas C, Abrantes I, Curtis R (2017) Significant effects of RNAi silencing of the venom allergen-like protein (Mhi-vap-1) of the root-knot nematode Meloidogyne hispanica in the early events of infection. Plant Pathol 66:1329–1337

    Article  CAS  Google Scholar 

  • Dutta TK, Banakar P, Rao U (2015a) The status of RNAi-based transgenic research in plant nematology. Front Microbiol 5:760

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutta TK, Papolu PK, Banakar P, Choudhary D, Sirohi A, Rao U (2015b) Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes. Front Microbiol 6:260

    PubMed  PubMed Central  Google Scholar 

  • Dutta TK, Khan MR, Phani V (2019) Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: current status and future prospects. Curr Plant Biol. https://doi.org/10.1016/j.cpb.2019.02.001

    Article  Google Scholar 

  • Elling AA (2013) Major emerging problems with minor Meloidogyne species. Phytopathol 103:1092–1102

    Article  Google Scholar 

  • Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS (2001) Molecular characterisation and expression of two venom allergen-like protein genes in Heterodera glycines. Int J Parasitol 31:1617–1625

    Article  CAS  PubMed  Google Scholar 

  • Gleason CA, Liu QL, Williamson VM (2008) Silencing a candidate nematode effector gene corresponding to the tomato resistance gene Mi-1 leads to acquisition of virulence. Mol Plant-Microbe Interact 21:576–585

    Article  CAS  PubMed  Google Scholar 

  • Grishok A, Tabara H, Mello CC (2000) Genetic requirements for inheritance of RNAi in C. elegans. Science 287:2494–2497

    Article  CAS  PubMed  Google Scholar 

  • Hewezi T, Baum TJ (2013) Manipulation of plant cells by cyst and root-knot nematode effectors. Mol Plant-Microbe Interact 26:9–16

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Gao B, Maier T, Allen R, Davis EL, Baum TJ et al (2003) A profile of putative parasitism genes expressed in the esophageal gland cells of the root-knot nematode Meloidogyne incognita. Mol Plant-Microbe Interact 16:376–381

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Dong R, Maier T, Allen R, Davis EL, Baum TJ et al (2004) Use of solid-phase subtractive hybridization for the identification of parasitism gene candidates from the root-knot nematode Meloidogyne incognita. Mol Plant Pathol 5:217–222

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306

    Article  CAS  PubMed  Google Scholar 

  • Kerschen A, Napoli CA, Jorgensen RA, Müller AE (2004) Effectiveness of RNA interference in transgenic plants. FEBS Lett 566:223–228

    Article  CAS  PubMed  Google Scholar 

  • Li XQ, Wei JZ, Tan A, Aroian RV (2007) Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol J 5:455–464

    Article  CAS  PubMed  Google Scholar 

  • Lilley CJ, Davies LJ, Urwin PE (2012) RNA interference in plant parasitic nematodes: a summary of the current status. Parasitology 139:630–640

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Torres JL, Wilbers RHP, Warmerdam S, Finkers-Tomczak A, Diaz-Granados A, van Schaik CC et al (2014) Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors. Plos Pathogen 10:e1004569

    Article  CAS  Google Scholar 

  • Luo S, Liu S, Kong L, Peng H, Huang W, Jian H et al (2018) Two venom allergen-like proteins, HaVAP 1 and HaVAP 2, are involved in the parasitism of Heterodera avenae. Mol Plant Pathol. https://doi.org/10.1111/mpp.12768

    Article  PubMed  Google Scholar 

  • Majumdar R, Rajasekaran K, Cary JW (2017) RNA interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: concepts and considerations. Front Plant Sci 8:200

    PubMed  PubMed Central  Google Scholar 

  • Mitchum MG, Hussey RS, Baum TJ, Wang X, Elling AA, Wubben M, Davis EL (2013) Nematode effector proteins: an emerging paradigm of parasitism. New Phytol 199:879–894

    Article  PubMed  Google Scholar 

  • Moens M, Perry RN, Starr JL (2009) Meloidogyne species—a diverse group of novel and important plant parasites. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes, UK. CAB International Publishers, Wallingford, pp 1–17

    Google Scholar 

  • Naito Y, Yamada T, Matsumiya T, Ui-Tei K, Saigo K, Morishita S (2005) dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference. Nucleic Acids Res 33:W589–W591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu J, Liu P, Liu Q, Chen C, Guo Q, Yin J et al (2016) Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism. Sci Rep 6:19443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pak J, Maniar JM, Mello CC, Fire A (2012) Protection from feed-forward amplification in an amplified RNAi mechanism. Cell 151:885–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palomares-Rius JE, Escobar C, Cabrera J, Vovlas A, Castillo P (2017) Anatomical alterations in plant tissues induced by plant-parasitic nematodes. Front Plant Sci 8:1987

    Article  PubMed  PubMed Central  Google Scholar 

  • Papolu PK, Gantasala NP, Kamaraju D, Banakar P, Sreevathsa R, Rao U (2013) Utility of host delivered RNAi of two FMRF amide like peptides, flp-14 and flp-18, for the management of root knot nematode, Meloidogyne incognita. PLoS One 8:e80603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papolu PK, Dutta TK, Tyagi N, Urwin PE, Lilley CJ, Rao U (2016) Expression of a cystatin transgene in eggplant provides resistance to root-knot nematode, Meloidogyne incognita. Front Plant Sci 7:1122

    Article  PubMed  PubMed Central  Google Scholar 

  • Roderick H, Urwin PE, Atkinson HJ (2018) Rational design of biosafe crop resistance to a range of nematodes using RNA interference. Plant Biotechnol J 16:520–529

    Article  CAS  PubMed  Google Scholar 

  • Rosso M-N, Jones JT, Abad P (2009) RNAi and functional genomics in plant parasitic nematodes. Ann Rev Phytopathol 47:207–232

    Article  CAS  Google Scholar 

  • Shivakumara TN, Papolu PK, Dutta TK, Kamaraju D, Chaudhary S, Rao U (2016) RNAi-induced silencing of an effector confers transcriptional oscillation in another group of effectors in the root-knot nematode, Meloidogyne incognita. Nematology 18:857–870

    Article  CAS  Google Scholar 

  • Shivakumara TN, Chaudhary S, Kamaraju D, Dutta TK, Papolu PK, Banakar P et al (2017) Host-induced silencing of two pharyngeal gland genes conferred transcriptional alteration of cell wall-modifying enzymes of Meloidogyne incognita vis-à-vis perturbed nematode infectivity in eggplant. Front Plant Sci 8:473

    Article  PubMed  PubMed Central  Google Scholar 

  • Sindhu AS, Maier TR, Mitchum MG, Hussey RS, Davis EL, Baum T (2009) Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60:315–324

    Article  CAS  PubMed  Google Scholar 

  • Southey JF (1986) Laboratory methods for work with plant and soil nematodes. Ministry of Agriculture, Fisheries, and Food Reference Book, London, p 402

    Google Scholar 

  • Wang X, Li H, Hu Y, Fu P, Xu J (2007) Molecular cloning and analysis of a new venom allergen-like protein gene from the root-knot nematode Meloidogyne incognita. Exp Parasitol 117:133–140

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Li S, Mo C, Wang G, Xiao X, Xiao Y (2016) A novel Meloidogyne incognita effector Misp12 suppresses plant defense response at latter stages of nematode parasitism. Front Plant Sci 7:964

    PubMed  PubMed Central  Google Scholar 

  • Xue B, Hamamouch N, Li C, Huang G, Hussey RS, Baum TJ, Davis EL (2013) The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots. Phytopathol 103:175–181

    Article  CAS  Google Scholar 

  • Yang Y, Jittayasothorn Y, Chronis D, Wang X, Cousins P, Zhong G-Y (2013) Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots. PLoS One 8:e69463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Peng D, Ye X, Yu Z, Hu Z, Ruan L et al (2012) In vitro uptake of 140 kDa Bacillus thuringiensis nematicidal crystal proteins by the second stage juvenile of Meloidogyne hapla. PLoS One 7:e38534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Ph.D. Student SC acknowledges her co-guide Dr. Vishakha Raina, School of Biotechnology, KIIT, Bhubaneswar, India. Current investigation was funded by Department of Biotechnology, Government of India (Grant No. BT/PR5908/AGR/36/727/2012).

Author information

Authors and Affiliations

Authors

Contributions

SC performed all the experiments. TKD wrote the MS and analysed of the data. NT, TNS, PKP and KAC helped in performing experiments. UR conceived the experiment and edited the MS. All the authors read and approved the final MS.

Corresponding author

Correspondence to Uma Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 945 kb)

Supplementary material 2 (PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, S., Dutta, T.K., Tyagi, N. et al. Host-induced silencing of Mi-msp-1 confers resistance to root-knot nematode Meloidogyne incognita in eggplant. Transgenic Res 28, 327–340 (2019). https://doi.org/10.1007/s11248-019-00126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-019-00126-5

Keywords

Navigation