Advertisement

Transgenic Research

, Volume 28, Issue 2, pp 267–286 | Cite as

Are current EU policies on GMOs justified?

  • Andreas T. ChristiansenEmail author
  • Martin Marchman Andersen
  • Klemens Kappel
Original Paper

Abstract

The European Court of Justice’s recent ruling that the new techniques for crop development are to be considered as genetically modified organisms under the European Union’s regulations exacerbates the need for a critical evaluation of those regulations. The paper analyzes the regulation from the perspective of moral and political philosophy. It considers whether influential arguments for restrictions of genetically modified organisms provide cogent justifications for the policies that are in place, in particular a pre-release authorization requirement, mandatory labelling, and de facto bans (in the form of withholding or opting out of authorizations). It is argued that arguments pertaining to risk can justify some form of pre-release authorization scheme, although not necessarily the current one, but that neither de facto bans nor mandatory labelling can be justified by reference to common arguments concerning naturalness, agricultural policy (in particular the promotion of organic farming), socio-economic effects, or consumers’ right to choose.

Keywords

GMO Policy Risk Natural Organic Labelling Authorization Opt-out 

Notes

Acknowledgements

The authors wish to thank the Practical Philosophy Research Group at the University of Copenhagen for several discussions of earlier drafts of the paper. We would especially like to thank Xavier Landes for significant input earlier in the process, and Bjørn Hallsson for detailed comments. Funding was provided by Novo Nordisk Fonden (Grand No. NNF17SA0031368) and Københavns Universitet (UCPH Excellence Program for Interdisciplinary Research).

References

  1. Agar N (1997) Biocentrism and the concept of life. Ethics 108(2):147–168CrossRefGoogle Scholar
  2. Andersen MM, Landes X, Xiang W, Anyshchenko A, Falhof J, Østerberg JT, Olsen LI, Edenbrandt AK, Vedel SE, Thorsen BJ, Sandøe P, Gamborg C, Kappel K, Palmgren MG (2015) Feasibility of new breeding techniques for organic farming. Trends Plant Sci 20(7):426–434CrossRefPubMedGoogle Scholar
  3. Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28(3):1–15Google Scholar
  4. Blancke S, Van Breusegem F, De Jaeger G, Braeckman J, Van Montagu M (2015) Fatal attraction: the intuitive appeal of GMO opposition. Trends Plant Sci 20(7):414–418CrossRefPubMedGoogle Scholar
  5. Bloom P (2011) How pleasure works: why we like what we like. Vintage, LondonGoogle Scholar
  6. Brookes G (2014) Weed control changes and genetically modified herbicide tolerant crops in the USA 1996–2012. GM Crops Food 5(4):321–332CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brookes G, Barfoot P (2016) Global income and production impacts of using GM crop technology 1996–2014. GM Crops Food 7(1):38–77CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brookes G, Barfoot P (2017) Environmental impacts of genetically modified (GM) crop use 1996–2015: impacts on pesticide use and carbon emissions. GM Crops Food 8(2):117–147CrossRefPubMedPubMedCentralGoogle Scholar
  9. Callicott JB (1980) Animal liberation: a triangular affair. Environ Ethics 2(4):311–338CrossRefGoogle Scholar
  10. EFSA (2010) Guidance on the environmental risk assessment of genetically modified plants. EFSA J 8(11):1–111Google Scholar
  11. Elliott R (1982) Faking nature. Inquiry 25:81–93CrossRefGoogle Scholar
  12. Eurobarometer (2010) Special Eurobarometer 341: biotechnology. European Commission, BrusselsGoogle Scholar
  13. European Commission (2000) Communication from the Commission on the Precautionary Principle (European Union, 2000). Retrieved from http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52000DC0001&from=EN
  14. Finger R, El Benni N, Kaphengst T, Evans C, Herbert S, Lehmann B, Morse S, Stupak N (2011) A meta analysis on farm-level costs and benefits of GM crops. Sustainability 3(5):743–762CrossRefGoogle Scholar
  15. Gardiner SM (2006) A core precautionary principle. J Polit Philos 14(1):33–60CrossRefGoogle Scholar
  16. Geelhoed M (2016) Divided in diversity: reforming the EU’s GMO regime. Camb Yearb Eur Legal Stud 18:20–44CrossRefGoogle Scholar
  17. Goodpaster KE (1976) On being morally considerable. J Philos 75(6):208–325Google Scholar
  18. Hartzell-Nichols L (2012) Precaution and solar radiation management. Ethics Policy Environ 15(2):158–171CrossRefGoogle Scholar
  19. Hayenhjelm M, Wolff J (2011) The moral problem of risk imposition. Eur J Philos 20(S1):E26–E51Google Scholar
  20. Holtug N (2001) On the value of coming into existence. J Ethics 5(4):361–384CrossRefGoogle Scholar
  21. Katz E (1992) The big lie: human restoration of nature. Res Philos Technol 12:231–241Google Scholar
  22. Kniss AR (2017) Long-term trends in the intensity and relative toxicity of herbicide use. Nat Commun 8(14865):1–7Google Scholar
  23. Kok EJ, Keijer J, Kleter GA, Kuiper HA (2008) Comparative safety assessment of plant-derived foods. Regul Toxicol Pharmacol 50(1):98–113CrossRefPubMedGoogle Scholar
  24. Kouser S, Qaim M (2011) Impact of Bt cotton on pesticide poisoning in smallholder agriculture: a panel data analysis. Ecol Econ 70(11):2105–2113CrossRefGoogle Scholar
  25. Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. PNAS 112(18):5644–5849CrossRefGoogle Scholar
  26. Lee K (1999) The natural and the artefactual. Lexington Books, LanhamGoogle Scholar
  27. Lenman J (2008) Contractualism and risk imposition. Polit Philos Econ 7(1):99–122CrossRefGoogle Scholar
  28. Leopold A (1949) A Sand County Almanac—And sketches here and there. Oxford University Press, OxfordGoogle Scholar
  29. Mannion AM, Morse S (2012) Biotechnology in agriculture: agronomic and environmental considerations and reflections based on 15 years of GM crops. Prog Phys Geogr 36(6):747–763CrossRefGoogle Scholar
  30. Mendelsohn M, Kough J, Vaituzis Z, Mattews K (2003) Are Bt crops safe? Nat Biotechnol 21(9):1003–1009CrossRefPubMedGoogle Scholar
  31. Mielby H, Sandøe P, Lassen J (2013) Multiple aspects of unnaturalness: are cisgenic crops perceived as being more natural and more acceptable than transgenic crops? Agric Hum Values 30(3):471–480CrossRefGoogle Scholar
  32. Muller A et al (2017) Strategies for feeding the world more sustainably with organic agriculture. Nat Commun 8(1290):1–13Google Scholar
  33. Næss A (2005) The deep ecology movement: some philosophical aspects. In: Naess A (ed) The selected works of Arne Naess, vol X: deep ecology of wisdom. Springer, DordrechtGoogle Scholar
  34. National Academies of Sciences (2016) Genetically engineered crops: experiences and prospects. National Academies Press, Washington DCGoogle Scholar
  35. Nordlee JA, Taylor SL, Townsend JA, Thomas LA, Bush RK (1996) Identification of a Brazil-nut allergen in transgenic soybeans. N Engl J Med 334:688–692CrossRefPubMedGoogle Scholar
  36. OECD (1993) Safety evaluation of foods derived by modern biotechnology: concepts and principles. OECD, ParisGoogle Scholar
  37. Palmgren MG, Edenbrandt AK, Vedel SE, Andersen MM, Landes X, Østerberg JT, Falhof J, Olsen LI, Christensen SB, Sandøe P, Gamborg C, Kappel K, Thorsen BJ, Pagh P (2015) Are we ready for back-to-nature crop breeding? Trends Plant Sci 20(3):155–164CrossRefPubMedGoogle Scholar
  38. Parfit D (1984) Reasons and persons. Oxford University Press, OxfordGoogle Scholar
  39. Pellegrino E, Bedini S, Nuti M, Ercoli L (2018) Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci Rep 8(3113):1–12Google Scholar
  40. Qaim M (2009) The economics of genetically modified crops. Ann Rev Resour Econ 1(1):665–693CrossRefGoogle Scholar
  41. Randall A (2011) Risk and precaution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  42. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6):66428CrossRefGoogle Scholar
  43. Royal Society (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. The Royal Society, LondonGoogle Scholar
  44. Rozin P, Spranca M, Krieger Z, Neuhaus R, Surillo D, Swerdlin A, Wood K (2004) Preference for natural: instrumental and ideational/moral motivations, and the contrast between foods and medicines. Appetite 43:147–154CrossRefPubMedGoogle Scholar
  45. Salas Ferrer B (2016) The European Commission’s GMO Opt-out for Member States: a WTO perspective. Eur J Risk Regul 7(1):187–190CrossRefGoogle Scholar
  46. SAM (2017) New Techniques in agricultural biotechnology, Explanatory Note, European UnionGoogle Scholar
  47. SAM (2018) A scientific perspective on the regulatory status of products derived from gene editing and the implications for the GMO directive. Statement by the Group of Scientific Advisors, European Union (2018)Google Scholar
  48. Sandler R (2007) Character and environment: a virtue oriented approach to environmental ethics. Columbia University Press, New YorkGoogle Scholar
  49. Scanlon TM (1998) What we owe to each other. Harvard Belknap Press, CambridgeGoogle Scholar
  50. Siipi H (2008) Dimensions of unnaturalness. Ethics Environ 13(1):71–103CrossRefGoogle Scholar
  51. Steel D (2014) Philosophy and the precautionary principle. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  52. Szántó V (2018) Essentialism, vitalism, and the GMO debate. Philos Technol 31(2):189–208CrossRefGoogle Scholar
  53. Tagliabue G (2017) The EU legislation on “GMOs” between nonsense and protectionism: an ongoing Schumpeterian chain of public choices. GM Crops Food 8:57–73CrossRefPubMedGoogle Scholar
  54. Taheri F, Azadi H, D’Haese M (2017) A world without hunger: organic or GM crops? Sustainability 9(4):580–596CrossRefGoogle Scholar
  55. Taylor PW (2011) Respect for nature: A theory of environmental ethics, 25th anniversary edn. Princeton University Press, PrincetonCrossRefGoogle Scholar
  56. Tenbült P, de Vries NK, Dreezens E, Martijn C (2005) Perceived naturalness and acceptance of genetically modified food. Appetite 45(1):47–50CrossRefPubMedGoogle Scholar
  57. Thompson P (2003) Unnatural farming and the debate over genetic manipulation. In: Gehring VV (ed) Genetic prospects: essays on biotechnology, ethics, and public policy. Rowman and Littlefield, LanhamGoogle Scholar
  58. Trouwborst A (2006) Precautionary rights and duties of states. Martinus Niejhoff, LeidenCrossRefGoogle Scholar
  59. Verhoog H (2007) Organic agriculture versus genetic engineering. NJAS 54(4):387–399Google Scholar
  60. Verhoog H, Matze M, Lammerts Van Bueren E, Baars T (2003) The role of the concept of the natural (naturalness) in organic farming. J Agric Environ Ethics 16(1):29–49CrossRefGoogle Scholar
  61. Weimer M, Pisani G (2014) The EU adventures of ‘Herculex’: report on the EU authorization of genetically modified maize 1507. Eur J Risk Res 5(2):208–212CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Media, Cognition and CommunicationUniversity of CopenhagenCopenhagenDenmark
  2. 2.DTU Management EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  3. 3.Department of Media, Cognition and CommunicationUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations