Skip to main content

CRISPR/Cas9 editing of carotenoid genes in tomato

Abstract

CRISPR/Cas9 technology is rapidly spreading as genome editing system in crop breeding. The efficacy of CRISPR/Cas9 in tomato was tested on Psy1 and CrtR-b2, two key genes of carotenoid biosynthesis. Carotenoids are plant secondary metabolites that must be present in the diet of higher animals because they exert irreplaceable functions in important physiological processes. Psy1 and CrtR-b2 were chosen because their impairment is easily detectable as a change of fruit or flower color. Two CRISPR/Cas9 constructs were designed to target neighboring sequences on the first exon of each gene. Thirty-four out of forty-nine (69%) transformed plants showed the expected loss-of-function phenotypes due to the editing of both alleles of a locus. However, by including the seven plants edited only at one of the two homologs and showing a normal phenotype, the editing rate reaches the 84%. Although none chimeric phenotype was observed, the cloning of target region amplified fragments revealed that in the 40% of analyzed DNA samples were present more than two alleles. As concerning the type of mutation, it was possible to identify 34 new different alleles across the four transformation experiments. The sequence characterization of the CRISPR/Cas9-induced mutations showed that the most frequent repair errors were the insertion and the deletion of one base. The results of this study prove that the CRISPRCas9 system can be an efficient and quick method for the generation of useful mutations in tomato to be implemented in breeding programs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  PubMed  CAS  Google Scholar 

  4. Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166:1292–1297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cai Y, Chen L, Liu X et al (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE 10:1–13

    Google Scholar 

  6. Cardi T, D’Agostino N, Tripodi P (2017) Genetic transformation and genomic resources for next-generation precise genome engineering in vegetable crops. Front Plant Sci 8:241

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cermak T, Curtin SJ, Gil-Humanes J et al (2017) A multi-purpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/VCas systems. Science 339:819–823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. D’Ambrosio C, Giorio G, Marino I et al (2004) Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase (tlcy-b) cDNA. Plant Sci 166:207–214

    Article  CAS  Google Scholar 

  10. D’Ambrosio C, Stigliani AL, Giorio G (2011) Overexpression of CrtR-b2 (carotene beta hydroxylase 2) from S. lycopersicum L. differentially affects xanthophyll synthesis and accumulation in transgenic tomato plants. Transgenic Res 20:47–60

    Article  PubMed  CAS  Google Scholar 

  11. Deltcheva E, Chylinski K, Sharma CM, Gonzales K (2011) CRISPR RNA maturation by trans -encoded small RNA and host factor RNase III. Nature 471:602–607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ding Y, Li H, Chen LL, Xie K (2016) Recent advances in genome editing using CRISPR/Cas9. Front Plant Sci 7:1–12

    Google Scholar 

  13. Endo M, Mikami M, Toki S (2016) Biallelic gene targeting in rice. Plant Physiol 170:667–677

    Article  PubMed  CAS  Google Scholar 

  14. Feng Z, Mao Y, Xu N et al (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci 111:4632–4637

    Article  PubMed  CAS  Google Scholar 

  15. Fray RG, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22:589–602

    Article  PubMed  CAS  Google Scholar 

  16. Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J (2006) A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18:1–14

    Article  CAS  Google Scholar 

  17. Giorio G, Stigliani AL, D’Ambrosio C (2008) Phytoene synthase genes in tomato (Solanum lycopersicum L.)—new data on the structures, the deduced amino acid sequences and the expression patterns. FEBS J 275:527–535

    Article  PubMed  CAS  Google Scholar 

  18. Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  PubMed  CAS  Google Scholar 

  19. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR–Cas9 for genome engineering. Cell 157:1262–1278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467:76–82

    Article  PubMed  CAS  Google Scholar 

  21. Jiang F, Doudna JA (2017) CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  PubMed  CAS  Google Scholar 

  22. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:1–12

    Article  CAS  Google Scholar 

  23. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR–Cas9 system. Appl Environ Microbiol 81:2506–2514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  PubMed  CAS  Google Scholar 

  25. Kachanovsky DE, Filler S, Isaacson T, Hirschberg J (2012) Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. Proc Natl Acad Sci 109:19021–19026

    Article  PubMed  Google Scholar 

  26. Lawrenson T, Shorinola O, Stacey N et al (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7:1494–1496

    Article  PubMed  CAS  Google Scholar 

  28. Li J, Aach J, Norville JE, Mccormack M, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated plant genome editing via guide RNA/Cas9. Nat Biotechnol 31:688–691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li R, Li R, Li X et al (2018) Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnol J 16:415–427

    Article  PubMed  CAS  Google Scholar 

  30. Liang Z, Chen K, Li T, Zhang Y et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:1–5

    Article  CAS  Google Scholar 

  31. Lin Y, Cradick TJ, Brown MT et al (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42:7473–7485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Liu YS, Gur A, Ronen G, Causse M et al (2003) There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol J 1:195–207

    Article  PubMed  CAS  Google Scholar 

  33. Liu W, Xie X, Ma X, Li J, Chen J, Liu YG (2015) DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Mol Plant 8:1431–1433

    Article  PubMed  CAS  Google Scholar 

  34. Liu X, Wu S, Xu J, Sui C, Wei J (2017) Application of CRISPR/Cas9 in plant biology. Acta Pharm Sin B 7:292–302

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ma X, Zhang Q, Zhu Q et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284

    Article  PubMed  CAS  Google Scholar 

  36. Ma X, Zhu Q, Chen Y, Liu YG (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9:961–974

    Article  PubMed  CAS  Google Scholar 

  37. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Moise AR, Al-Babili S, Wurtzel ET (2014) Mechanistic aspects of carotenoid biosynthesis. Chem Rev 114:164–193

    Article  PubMed  CAS  Google Scholar 

  39. Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82

    Article  PubMed  CAS  Google Scholar 

  40. Nonaka S, Arai C, Takayama M, Matsukura C, Ezura H (2017) Efficient increase of Γ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci Rep 7:1–14

    Article  CAS  Google Scholar 

  41. Pan C, Ye L, Qin L et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:2–10

    Article  CAS  Google Scholar 

  42. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Podevin N, Davies HV, Hartung F, Nogué F, Casacuberta JM (2013) Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol 31:375–383

    Article  PubMed  CAS  Google Scholar 

  44. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR–Cas9 system. Nat Protoc 8:2281–2308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ricroch A, Clairand P, Harwood W (2017) Use of CRISPR systems in plant genome editing : toward new opportunities in agriculture. Emerg Top Life Sci 1:169–182

    Article  Google Scholar 

  46. Roldan MVG, Périlleux C, Morin H, Huerga-Fernandez S, Latrasse D, Benhamed M, Bendahmane A (2017) Natural and induced loss of function mutations in SlMBP21 MADS-box gene led to jointless-2 phenotype in tomato. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  47. Stigliani AL, Giorio G, D’Ambrosio C (2011) Characterization of P450 carotenoid β- and ε-hydroxylases of tomato and transcriptional regulation of xanthophyll biosynthesis in root, leaf, petal and fruit. Plant Cell Physiol 52:851–865

    Article  PubMed  CAS  Google Scholar 

  48. Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L (2018) Carotenoid metabolism in plants: the role of plastids. Mol Plant 11:58–74

    Article  PubMed  CAS  Google Scholar 

  49. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Tsai SQ, Zheng Z, Nguyen NT et al (2015) GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat Biotechnol 33:187–197

    Article  PubMed  CAS  Google Scholar 

  51. Ueta R, Abe C, Watanabe T et al (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep 7:1–8

    Article  CAS  Google Scholar 

  52. Waltz E (2016) CRISPR-edited crops free to enter market, skip regulation. Nat Biotechnol 34:582

    Article  PubMed  CAS  Google Scholar 

  53. Waltz E (2018) With a free pass, CRISPR-edited plants reach market in record time. Nat Biotechnol 36:6

    Article  PubMed  CAS  Google Scholar 

  54. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/cas-mediated genome engineering. Cell 153:910–918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  PubMed  CAS  Google Scholar 

  56. Wright AV, Nuñez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164:29–44

    Article  PubMed  CAS  Google Scholar 

  57. Xing HL, Dong L, Wang ZP et al (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Yuan H, Zhang J, Nageswaran D, Li L (2015) Carotenoid metabolism and regulation in horticultural crops. Hortic Res 2(July):15036. https://doi.org/10.1038/hortres.2015.36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhang H, Zhang J, Wei P et al (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807

    Article  PubMed  CAS  Google Scholar 

  60. Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–10914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zsögön A, Cermak T, Voytas D, Peres LEP (2017) Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: case study in tomato. Plant Sci 256:120–130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the Colleagues of Agronomic Service Unit of the Metapontum Agrobios Research Centre for help with plant maintenance and seed collection. We are also grateful to Laura Giorio for providing language help. This work was funded by ALSIA (Agenzia Lucana per lo Sviluppo e l’Innovazione in Agricoltura) in the framework of the “Piano Annuale di Attività 2016”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Caterina D’Ambrosio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 736 kb)

Supplementary material 2 (XLSX 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Ambrosio, C., Stigliani, A.L. & Giorio, G. CRISPR/Cas9 editing of carotenoid genes in tomato. Transgenic Res 27, 367–378 (2018). https://doi.org/10.1007/s11248-018-0079-9

Download citation

Keywords

  • CRISPR/Cas9
  • Psy1
  • CrtR-b2
  • Tomato
  • Gene knockout
  • Metabolic engineering