Advertisement

Transgenic Research

, Volume 27, Issue 1, pp 87–101 | Cite as

Intrinsic antimicrobial properties of silk spun by genetically modified silkworm strains

  • Alessio Saviane
  • Ottavia Romoli
  • Andrea Bozzato
  • Giuliano Freddi
  • Chiara Cappelletti
  • Elena Rosini
  • Silvia Cappellozza
  • Gianluca Tettamanti
  • Federica Sandrelli
Original Paper

Abstract

The domesticated silkworm, Bombyx mori, is a fundamental insect for silk industry. Silk is obtained from cocoons, protective envelopes produced during pupation and composed of single raw silk filaments secreted by the insect silk glands. Currently, silk is used as a textile fibre and to produce new materials for technical and biomedical applications. To enhance the use of both fabrics and silk-based materials, great efforts to obtain silk with antimicrobial properties have been made. In particular, a convincing approach is represented by the enrichment of the textile fibre with antimicrobial peptides, the main effectors of the innate immunity. To this aim, silkworm-based transgenic techniques appear to be cost-effective strategies to obtain cocoons in which antimicrobial peptides are integrated among the silk proteins. Recently, cocoons transgenic for a recombinant silk protein conjugated to the silkworm Cecropin B antimicrobial peptide were obtained and showed enhanced antibacterial properties (Li et al. in Mol Biol Rep 42:19–25,  https://doi.org/10.1007/s11033-014-3735-z, 2015a). In this work we used the piggyBac-mediated germline transformation to generate several transgenic B. mori lines able to overexpress Cecropin B or Moricin antimicrobial peptides at the level of the silk gland. The derived cocoons were characterised by increased antimicrobial properties and the resulting silk fibre was able to inhibit the bacterial growth of the Gram-negative Escherichia coli. Our results suggest that the generation of silkworm overexpressing unconjugated antimicrobial peptides in the silk gland might represent an additional strategy to obtain antimicrobial peptide-enriched silk, for the production of new silk-based materials.

Keywords

Bombyx mori Transgenesis Silk Antimicrobial peptides 

Notes

Acknowledgements

This work was supported by grants from Regione Lombardia to G.T. and G.F. in the framework of the Project ID 30141940 “SILKBIOTECH: biotechnological production of antimicrobial silk” (MIUR-Regione Lombardia 2012–2015) and by grants from the companies and institutions (Ratti srl, Res Pharma srl, Bioengineering laboratories srl, Tintoria Clerici srl, University of Insubria, Innovhub-SSI, Silk Area) participating to the same project as S.C.; from CARIPARO (Progetti di Eccellenza 2011/12) to S.C, F.S. and G.T. and from the Università degli Studi di Padova (CPDA154301) to F.S. A.B. was supported by a postdoctoral fellowship from Università degli Studi di Padova (CPDR100470). We are grateful to NARO (Japan) and EMBL (Germany) for providing the pBacFibH-Gal4/3xP3DsRed and pETM-22 plasmids, respectively. The authors wish to thank Paola D’Antona who participated in early experiments.

Compliance with ethical standards

Conflict of interests

All the authors declared that they have no conflict of interest.

Ethical statements

Our study complies with institutional standards on silkworm research.

Supplementary material

11248_2018_59_MOESM1_ESM.pdf (615 kb)
Supplementary material 1 (PDF 615 kb)

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402.  https://doi.org/10.1093/nar/25.17.3389 CrossRefPubMedPubMedCentralGoogle Scholar
  2. ASTM International (2013) ASTM E2149-13a, standard test method for determining the antimicrobial activity of antimicrobial agents under dynamic contact conditions. West Conshohocken.  https://doi.org/10.1520/e2149. www.astm.org
  3. Atrouni AA, Joly-Guillou ML, Hamze M, Kempf M (2016) Reservoirs of non-baumannii Acinetobacter species. Front Microbiol 7:49.  https://doi.org/10.3389/fmicb.2016.00049 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baggio F, Bozzato A, Benna C, Leonardi E, Romoli O, Cognolato M, Tosatto SC, Costa R (2013) Sandrelli F (2013) 2mit, an intronic gene of Drosophila melanogaster timeless2, is involved in behavioral plasticity. PLoS ONE 8:e76351.  https://doi.org/10.1371/journal.pone.0076351 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bai L, Zhu L, Min S, Liu L, Cai Y, Yao J (2008) Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide. Appl Surf Sci 254:2988–2995.  https://doi.org/10.1016/j.apsusc.2007.10.049 CrossRefGoogle Scholar
  6. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250.  https://doi.org/10.1038/nrmicro1098 CrossRefPubMedGoogle Scholar
  7. Callaway JE, Lai J, Haselbeck B, Baltaian M, Bonnesen SP, Weickmann J, Wilcox G, Lei SP (1993) Modification of the C terminus of cecropin is essential for broad-spectrum antimicrobial activity. Antimicrob Agents Chemother 37:1614–1619.  https://doi.org/10.1128/AAC.37.8.1614 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cao TT, Zhang YQ (2016) Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater Sci Eng C Mater Biol Appl 61:940–952.  https://doi.org/10.1016/j.msec.2015.12.082 CrossRefPubMedGoogle Scholar
  9. Cappellozza S (inventor) (2004) CREA, assignee. Patent IT 000155Google Scholar
  10. Cappellozza S, Saviane A (inventors) (2015) CREA, assignee. Patent IT 1416868 (2015)Google Scholar
  11. Cappellozza S, Saviane A, Tettamanti G, Squadrin M, Vendramin E, Paolucci P, Franzetti E, Squartini A (2011) Identification of Enterococcus mundtii as a pathogenic agent involved in the “flacherie” disease in Bombyx mori L. larvae reared on artificial diet. J Invertebr Pathol 106:386–393.  https://doi.org/10.1016/j.jip.2010.12.007 CrossRefPubMedGoogle Scholar
  12. Cheng T, Zhao P, Liu C, Xu P, Gao Z, Xia Q, Xiang Z (2006) Structures, regulatory regions, and inductive expression patterns of antimicrobial peptide genes in the silkworm, Bombyx mori. Genomics 87:356–365.  https://doi.org/10.1016/j.ygeno.2005.11.018 CrossRefPubMedGoogle Scholar
  13. Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7:1431–1440.  https://doi.org/10.1016/j.actbio.2010.11.005 CrossRefPubMedGoogle Scholar
  14. Doughari HJ, Ndakidemi PA, Human IS, Benade S (2011) The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ 26:101–112.  https://doi.org/10.1264/jsme2.ME10179 CrossRefPubMedGoogle Scholar
  15. Duan J, Li R, Cheng D, Fan W, Zha X, Cheng T, Wu Y, Wang J, Mita K, Xiang Z, Xia Q (2010) SilkDB v2.0: a platform for silkworm (Bombyx mori) genome biology. Nucleic Acids Res 38:D453–D456.  https://doi.org/10.1093/nar/gkp801 CrossRefPubMedGoogle Scholar
  16. Fang SM, Hu BL, Zhou QZ, Yu QY, Zhang Z (2015) Comparative analysis of the silk gland transcriptomes between the domestic and wild silkworms. BMC Genomics 16:60.  https://doi.org/10.1186/s12864-015-1287-9 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fraser MJ Jr (2012) Insect transgenesis: current applications and future prospects. Annu Rev Entomol 57:267–289.  https://doi.org/10.1146/annurev.ento.54.110807.090545 CrossRefPubMedGoogle Scholar
  18. Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78:60–72.  https://doi.org/10.1177/0040517507082332 CrossRefGoogle Scholar
  19. Grzelak K (1995) Control of expression of silk protein genes. Comp Biochem Physiol B Biochem Mol Biol 110:671–681.  https://doi.org/10.1016/0305-0491(94)00215-G CrossRefPubMedGoogle Scholar
  20. Gtari M, Ghodhbane-Gtari F, Nouioui I, Beauchemin N, Tisa LS (2012) Phylogenetic perspectives of nitrogen-fixing actinobacteria. Arch Microbiol 194:3–11.  https://doi.org/10.1007/s00203-011-0733-6 CrossRefPubMedGoogle Scholar
  21. Hao L, Wu J, Lin S, Tian T, Qi J, Yang J, Wang Z (2011) Immobilized antibacterial peptides on polyethylene terephthalate non-woven fabrics and antibacterial activity evaluation. Text Res J 81:1977–1982.  https://doi.org/10.1177/0040517510402126 CrossRefGoogle Scholar
  22. Hara S, Yamakawa M (1995) Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J Biol Chem 270:29923–29927.  https://doi.org/10.1074/jbc.270.50.29923 CrossRefPubMedGoogle Scholar
  23. Hu H, Wang C, Guo X, Li W, Wang Y, He Q (2013) Broad activity against porcine bacterial pathogens displayed by two insect antimicrobial peptides Moricin and Cecropin B. Mol Cells 35:106–114.  https://doi.org/10.1007/s10059-013-2132-0 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40517–40528.  https://doi.org/10.1074/jbc.M006897200 CrossRefPubMedGoogle Scholar
  25. Kamjam M, Sivalingam P, Deng Z, Hong K (2017) Deep sea Actimomycetes and their secondary metabolites. Front Microbiol 8:760.  https://doi.org/10.3389/fmicb.2017.00760 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kaneko Y, Tanaka H, Ishibashi J, Iwasaki T, Yamakawa M (2008) Gene expression of a novel defensin antimicrobial peptide in the silkworm, Bombyx mori. Biosci Biotechnol Biochem 72:2353–2361.  https://doi.org/10.1271/bbb.80263 CrossRefPubMedGoogle Scholar
  27. Koh LD, Yuan Cheng Y, Tenga CP, Khina YW, Loha XJ, Teea SY, Lowa M, Yea E, Yua HD, Zhang YW, Hana MY (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46:86–110.  https://doi.org/10.1016/j.progpolymsci.2015.02.001 CrossRefGoogle Scholar
  28. Kokoza V, Ahmed A, Woon Shin S, Okafor N, Zou Z, Raikhel AS (2010) Blocking of Plasmodium transmission by cooperative action of Cecropin A and Defensin A in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci USA 107:8111–8116.  https://doi.org/10.1073/pnas.1003056107 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457–470.  https://doi.org/10.1016/j.addr.2012.09.043 CrossRefPubMedGoogle Scholar
  30. Li Z, Jiang Y, Cao G, Li J, Xue R, Gong C (2015a) Construction of transgenic silkworm spinning antibacterial silk with fluorescence. Mol Biol Rep 42:19–25.  https://doi.org/10.1007/s11033-014-3735-z CrossRefPubMedGoogle Scholar
  31. Li AB, Kluge JA, Guziewicz NA, Omenetto FG, Kaplan DL (2015b) Silk-based stabilization of biomacromolecules. J Control Release 219:416–430.  https://doi.org/10.1016/j.jconrel.2015.09.03 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Liu X, Lin T, Peng B, Wang X (2012) Antibacterial activity of capsaicin-coated wool fabric. Text Res J 82:584–590.  https://doi.org/10.1177/0040517511426608 CrossRefGoogle Scholar
  33. Melo AL, Soccol VT, Soccol CR (2016) Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit Rev Biotechnol 36:317–326.  https://doi.org/10.3109/07388551.2014.960793 CrossRefPubMedGoogle Scholar
  34. Montali A, Romanelli D, Cappellozza S, Grimaldi A, de Eguileor M, Tettamanti G (2017) Timing of autophagy and apoptosis during posterior silk gland degeneration in Bombyx mori. Arthropod Struct Dev 46:518–528.  https://doi.org/10.1016/j.asd.2017.05.003 CrossRefPubMedGoogle Scholar
  35. Nadiger VG, Shukla RS (2016) Antibacterial properties of silk fabric treated with silver nanoparticles. J Text Inst 107:1543–1553.  https://doi.org/10.1080/00405000.2015.1129756 CrossRefGoogle Scholar
  36. Nicholson WL (2002) Roles of Bacillus endospores in the environment. Cell Mol Life Sci 59:410–416.  https://doi.org/10.1007/s00018-002-8433-7 CrossRefPubMedGoogle Scholar
  37. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45.  https://doi.org/10.1093/nar/29.9.e45 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ponnuvel KM, Subhasri N, Sirigineedi S, Murthy GN, Vijayaprakash NB (2010) Molecular evolution of the cecropin multigene family in silkworm Bombyx mori. Bioinformation 5:97–103CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pritchard EM, Kaplan DL (2011) Silk fibroin biomaterials for controlled release drug delivery. Expert Opin Drug Deliv 8:797–811.  https://doi.org/10.1517/17425247.2011.568936 CrossRefPubMedGoogle Scholar
  40. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6:1612–1631.  https://doi.org/10.1038/nprot.2011.379 CrossRefPubMedGoogle Scholar
  41. Romoli O, Saviane A, Bozzato A, D’Antona P, Tettamanti G, Squartini A, Cappellozza S, Sandrelli F (2017) Differential sensitivity to infections and antimicrobial peptide-mediated immune response in four silkworm strains with different geographical origin. Sci Rep 7:1048.  https://doi.org/10.1038/s41598-017-01162-z CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rosselli R, Romoli O, Vitulo N, Vezzi A, Campanaro S, de Pascale F, Schiavon R, Tiarca M, Poletto F, Concheri G, Valle G, Squartini A (2016) Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon. Sci Rep 6:32165.  https://doi.org/10.1038/srep32165 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sandrelli F, Cappellozza S, Benna C, Saviane A, Mastella A, Mazzotta GM, Moreau S, Pegoraro M, Piccin A, Zordan MA, Cappellozza L, Kyriacou CP, Costa R (2007) Phenotypic effects induced by knock-down of the period clock gene in Bombyx mori. Genet Res 89:73–84.  https://doi.org/10.1017/S0016672307008713 CrossRefPubMedGoogle Scholar
  44. Schaegger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22.  https://doi.org/10.1038/nprot.2006.4 CrossRefGoogle Scholar
  45. Schaunig C, Kopera D (2017) Silk textile with antimicrobial AEM5772/5 (Dermasilk): a pilot study with positive influence on acne vulgaris on the back. Int J Dermatol 56:589–591.  https://doi.org/10.1111/ijd.13541 CrossRefPubMedGoogle Scholar
  46. Sezutsu H, Uchino K, Kobayashi I, Tatematsu K, Iizuka T, Yonemura N, Tamura T (2009) Conservation of fibroin gene promoter function between the domesticated silkworm Bombyx mori and the wild silkmoth Antheraea yamamai. J Insect Biotechnol Sericol 78:1–10Google Scholar
  47. Shimomura M, Minami H, Suetsugu Y, Ohyanagi H, Satoh C, Antonio B, Nagamura Y, Kadono-Okuda K, Kajiwara H, Sezutsu H, Nagaraju J, Goldsmith MR, Xia Q, Yamamoto K, Mita K (2009) KAIKObase: an integrated silkworm genome database and data mining tool. BMC Genomics 10:486.  https://doi.org/10.1186/1471-2164-10-486 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Song DW, Kim SH, Kim HH, Lee KH, Ki CS, Park YH (2016) Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: implications for wound healing. Acta Biomater 39:146–155.  https://doi.org/10.1016/j.actbio.2016.05.008 CrossRefPubMedGoogle Scholar
  49. Takasu Y, Hata T, Uchino K, Zhang Q (2010) Identification of Ser2 proteins as major sericin components in the non-cocoon silk of Bombyx mori. Insect Biochem Mol Biol 40:339344.  https://doi.org/10.1016/j.ibmb.2010.02.010 Google Scholar
  50. Tamura T, Thibert C, Royer C, Kanda T, Eappen A, Kamba M, Kômoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84.  https://doi.org/10.1038/71978 CrossRefPubMedGoogle Scholar
  51. Tanaka H, Ishibashi J, Fujita K, Nakajima Y, Sagisaka A, Tomimoto K, Suzuki N, Yoshiyama M, Kaneko Y, Iwasaki T, Sunagawa T, Yamaji K, Asaoka A, Mita K, Yamakawa M (2008) A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem Mol Biol 38:1087–1110.  https://doi.org/10.1016/j.ibmb.2008.09.001 CrossRefPubMedGoogle Scholar
  52. Tiago I, Chung AP, Veríssimo A (2004) Bacterial diversity in a nonsaline alkaline environment: heterotrophic aerobic populations. Appl Environ Microbiol 70:7378–7387.  https://doi.org/10.1128/AEM.70.12.7378-7387.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient Phylum. Microbiol Mol Biol Rev 71:495–548.  https://doi.org/10.1128/MMBR.00005-07 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Weng H, Pan A, Yang L, Zhang C, Liu Z, Zhang D (2004) Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay withHMG I/Y as an endogenous reference gene. Plant Mol Biol Rep 22:289.  https://doi.org/10.1007/BF02773139 CrossRefGoogle Scholar
  55. Wilson D, Valluzzi R, Kaplan D (2000) Conformational transition in model silk peptides. Biophys J 78:2690–2701.  https://doi.org/10.1016/S0006-3495(00)76813-5 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wöltje M, Böbel M (2016) Natural biodegradable medical polymers: silk. In: Zhang XC (ed) Science and principles of biodegradable and bioresorbable medical polymers, 1st edn. Elsevier, Netherlands, pp 351–376Google Scholar
  57. Xu H, O’Brochta D (2015) Advanced technologies for genetically manipulating the silkworm Bombyx mori, a model Lepidopteran insect. Proc Biol Sci 282:20150487.  https://doi.org/10.1098/rspb.2015.0487 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yamano Y, Matsumoto M, Inoue K, Kawabata T, Morishima I (1994) Cloning of cDNAs for cecropins A and B, and expression of the genes in the silkworm, Bombyx mori. Biosci Biotechnol Biochem 58:1476–1478.  https://doi.org/10.1271/bbb.58.1476 CrossRefPubMedGoogle Scholar
  59. Yang W, Cheng T, Ye M, Deng X, Yi H, Huang Y, Tan X, Han D, Wang B, Xiang Z, Cao Y, Xia Q (2011) Functional divergence among silkworm antimicrobial peptide paralogs by the activities of recombinant proteins and the induced expression profiles. PLoS ONE 6:e18109.  https://doi.org/10.1371/journal.pone.0018109 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yi HY, Chowdhury M, Huang YD, Yu XQ (2014) Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 98:5807–5822.  https://doi.org/10.1007/s00253-014-5792-6 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yua D, Kanga G, Tiana W, Lina L, Wanga W (2015) Preparation of conductive silk fabric with antibacterial properties by electroless silver plating. Appl Surf Sci 357:1157–1162.  https://doi.org/10.1016/j.apsusc.2015.09.074 CrossRefGoogle Scholar
  62. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395.  https://doi.org/10.1038/415389a CrossRefPubMedGoogle Scholar
  63. Zhou CZ, Confalonieri F, Medina N, Zivanovic Y, Esnault C, Yant T, Jacquet M, Janin J, Duguet M, Perasso R, Li ZG (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res 28:2413–2419.  https://doi.org/10.1093/nar/28.12.2413 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J (2001) Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins 44:119–122.  https://doi.org/10.1002/prot.1078 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CREA Department of Agriculture and Environment (CREA-AA)PaduaItaly
  2. 2.Department of BiologyUniversity of PadovaPaduaItaly
  3. 3.Innovhub-SSIMilanItaly
  4. 4.Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
  5. 5.The Protein Factory Research CenterPolitecnico di Milano and University of InsubriaVareseItaly
  6. 6.Silk Biomaterials s.r.lLomazzoItaly

Personalised recommendations