Skip to main content

Advertisement

Log in

Genome editing in livestock: Are we ready for a revolution in animal breeding industry?

  • Review
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Genome editing is a powerful technology that can efficiently alter the genome of organisms to achieve targeted modification of endogenous genes and targeted integration of exogenous genes. Current genome-editing tools mainly include ZFN, TALEN and CRISPR/Cas9, which have been successfully applied to all species tested including zebrafish, humans, mice, rats, monkeys, pigs, cattle, sheep, goats and others. The application of genome editing has quickly swept through the entire biomedical field, including livestock breeding. Traditional livestock breeding is associated with rate limiting issues such as long breeding cycle and limitations of genetic resources. Genome editing tools offer solutions to these problems at affordable costs. Generation of gene-edited livestock with improved traits has proven feasible and valuable. For example, the CD163 gene-edited pig is resistant to porcine reproductive and respiratory syndrome (PRRS, also referred to as “blue ear disease”), and a SP110 gene knock-in cow less susceptible to tuberculosis. Given the high efficiency and low cost of genome editing tools, particularly CRISPR/Cas9, it is foreseeable that a significant number of genome edited livestock animals will be produced in the near future; hence it is imperative to comprehensively evaluate the pros and cons they will bring to the livestock breeding industry. Only with these considerations in mind, we will be able to fully take the advantage of the genome editing era in livestock breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldemita RR, Reano IM, Solis RO, Hautea RA (2015) Trends in global approvals of biotech crops (1992–2014). GM Crops Food 6:150–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Araki M, Nojima K, Ishii T (2014) Caution required for handling genome editing technology. Trends Biotechnol 32:234–237

    Article  CAS  PubMed  Google Scholar 

  • Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, Whitelaw CB, Archibald AL (2017) Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog 13:e1006206

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai C, Qian L, Jiang S, Sun Y, Wang Q, Ma D, Xiao G, Li B, Xie S, Gao T, Chen Y, Liu J, An X, Cui W, Li K (2017) Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs. Oncotarget 8:34911–34922

    PubMed  PubMed Central  Google Scholar 

  • Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109:17382–17387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC (2016) Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 34:479–481

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Li C, Fang M, Zhu M, Li X, Zhou R, Li K, Zhao S (2009) Understanding Haemophilus parasuis infection in porcine spleen through a transcriptomics approach. BMC Genom 10:64

    Article  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davoli R, Braglia S (2007) Molecular approaches in pig breeding to improve meat quality. Brief Funct Genomic Proteomic 6:313–321

    Article  CAS  PubMed  Google Scholar 

  • Deng S, Yu K, Zhang B, Yao Y, Liu Y, He H, Zhang H, Cui M, Fu J, Lian Z, Li N (2012) Effects of over-expression of TLR2 in transgenic goats on pathogen clearance and role of up-regulation of lysozyme secretion and infiltration of inflammatory cells. BMC Vet Res 8:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duijvesteijn N, Knol EF, Merks JW, Crooijmans RP, Groenen MA, Bovenhuis H, Harlizius B (2010) A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6. BMC Genet 11:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng W, Dai Y, Mou L, Cooper DK, Shi D, Cai Z (2015) The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from chimaeric pigs. Int J Mol Sci 16:6545–6556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24:372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27:851–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonas E, de Koning DJ (2015) Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs. Front Genet 6:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, Hao Y, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai Y (2006) Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24:435–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Kwon DN, Ezashi T, Choi YJ, Park C, Ericsson AC, Brown AN, Samuel MS, Park KW, Walters EM, Kim DY, Kim JH, Franklin CL, Murphy CN, Roberts RM, Prather RS, Kim JH (2014) Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci USA 111:7260–7265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, Malani N, Anguela XM, Sharma R, Ivanciu L, Murphy SL, Finn JD, Khazi FR, Zhou S, Paschon DE, Rebar EJ, Bushman FD, Gregory PD, Holmes MC, High KA (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Yang Y, Bu L, Guo X, Tang C, Song J, Fan N, Zhao B, Ouyang Z, Liu Z, Zhao Y, Yi X, Quan L, Liu S, Yang Z, Ouyang H, Chen YE, Wang Z, Lai L (2014) Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Res 24:501–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Lian D, Deng S, Zhang X, Zhang J, Li W, Bai H, Wang Z, Wu H, Fu J, Han H, Feng J, Liu G, Lian L, Lian Z (2016) Efficient production of pronuclear embryos in breeding and nonbreeding season for generating transgenic sheep overexpressing TLR4. J Anim Sci Biotechnol 7:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Li R, Quan S, Yan X, Biswas S, Zhang D, Shi J (2017) Molecular characterization of genetically-modified crops: challenges and strategies. Biotechnol Adv 35:302–309

    Article  CAS  PubMed  Google Scholar 

  • Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C, Blain C, King TJ, Ritchie WA, Tan W, Mileham AJ, McLaren DG, Fahrenkrug SC, Whitelaw CB (2013) Live pigs produced from genome edited zygotes. Sci Rep 3:2847

    Article  PubMed  Google Scholar 

  • Lillico SG, Proudfoot C, King TJ, Tan W, Zhang L, Mardjuki R, Paschon DE, Rebar EJ, Urnov FD, Mileham AJ, McLaren DG, Whitelaw CB (2016) Mammalian interspecies substitution of immune modulatory alleles by genome editing. Sci Rep 6:21645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y (2013) Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun 4:2565

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z, Quan F, Zhang Y (2014) Generation of mastitis resistance in cows by targeting human lysozyme gene to beta-casein locus using zinc-finger nucleases. Proc Biol Sci 281:20133368

    Article  PubMed  PubMed Central  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94:12457–12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    Article  CAS  PubMed  Google Scholar 

  • Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, Polejaeva IA, Chen C (2014) Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS ONE 9:e106718

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishi M, Yasue A, Nishimatu S, Nohno T, Yamaoka T, Itakura M, Moriyama K, Ohuchi H, Noji S (2002) A missense mutant myostatin causes hyperplasia without hypertrophy in the mouse muscle. Biochem Biophys Res Commun 293:247–251

    Article  CAS  PubMed  Google Scholar 

  • Ollivier L, Sellier P (1982) Pig genetics: a review. Ann Genet Sel Anim 14:481–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham AJ, McLaren DG, Whitelaw CB, Fahrenkrug SC (2015) Genome edited sheep and cattle. Transgenic Res 24:147–153

    Article  CAS  PubMed  Google Scholar 

  • Qian L, Tang M, Yang J, Wang Q, Cai C, Jiang S, Li H, Jiang K, Gao P, Ma D, Chen Y, An X, Li K, Cui W (2015) Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep 5:14435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan J, Li H, Xu K, Wu T, Wei J, Zhou R, Liu Z, Mu Y, Yang S, Ouyang H, Chen-Tsai RY, Li K (2015) Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Sci Rep 5:14253

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato M, Miyoshi K, Nagao Y, Nishi Y, Ohtsuka M, Nakamura S, Sakurai T, Watanabe S (2014) The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the alpha-1,3-galactosyltransferase gene in porcine embryonic fibroblasts. Xenotransplantation 21:291–300

    Article  PubMed  Google Scholar 

  • Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun T, Tobin JF, Lee SJ (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350:2682–2688

    Article  CAS  PubMed  Google Scholar 

  • Tang M, Zheng X, Cheng W, Jin E, Chen H, Yang S, Cui W, Li K (2011) Safety assessment of sFat-1 transgenic pigs by detecting their co-habitant microbe in intestinal tract. Transgenic Res 20:749–758

    Article  CAS  PubMed  Google Scholar 

  • Tang M, Qian L, Jiang S, Zhang J, Song P, Chen Y, Cui W, Li K (2014) Functional and safety evaluation of transgenic pork rich in omega-3 fatty acids. Transgenic Res 23:557–571

    Article  CAS  PubMed  Google Scholar 

  • Tao C, Yang Y, Li X, Zheng X, Ren H, Li K, Zhou R (2016) Rapid and sensitive detection of sFAT-1 transgenic pigs by visual loop-mediated isothermal amplification. Appl Biochem Biotechnol 179:938–946

    Article  CAS  PubMed  Google Scholar 

  • Waltz E (2012) Tiptoeing around transgenics. Nat Biotechnol 30:215–217

    Article  CAS  PubMed  Google Scholar 

  • Waltz E (2016a) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293

    Article  CAS  PubMed  Google Scholar 

  • Waltz E (2016b) GM salmon declared fit for dinner plates. Nat Biotechnol 34:7–9

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Ouyang H, Xie Z, Yao C, Guo N, Li M, Jiao H, Pang D (2015a) Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep 5:16623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, Dong Z, Niu Y, Shi B, Cai B, Liu J, Huang S, Yan H, Zhao X, Zhou G, He X, Chen X, Yang Y, Jiang Y, Shi L, Tian X, Wang Y, Ma B, Huang X, Qu L, Chen Y (2015b) Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep 5:13878

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei J, Wagner S, Lu D, Maclean P, Carlson DF, Fahrenkrug SC, Laible G (2015) Efficient introgression of allelic variants by embryo-mediated editing of the bovine genome. Sci Rep 5:11735

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao J, O’Gorman C, Walters EM, Murphy CN, Driver J, Mileham A, McLaren D, Wells KD, Prather RS (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitworth KM, Rowland RR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG, Mileham AJ, Wells KD, Prather RS (2016) Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 34:20–22

    Article  CAS  PubMed  Google Scholar 

  • Whyte JJ, Zhao J, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood RJ (1973) Robert Bakewell (1725–1795), pioneer animal breeder, and his influence on Charles Darwin. Folia Mendeliana 58:231–242

    CAS  PubMed  Google Scholar 

  • Wu H, Wang Y, Zhang Y, Yang M, Lv J, Liu J, Zhang Y (2015) TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci USA 112:E1530–E1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, Chen YE, Lai L (2011) Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 21:979–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Li X, Li K, Fan B, Tang Z (2014) A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds. BMC Genet 15:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao J, Huang J, Hai T, Wang X, Qin G, Zhang H, Wu R, Cao C, Xi JJ, Yuan Z, Zhao J (2014) Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs. Sci Rep 4:6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Luo J, Song Z, Ding F, Dai Y, Li N (2011) Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res 21:1638–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Transgenic Project of China (2016ZX08006-001) and National Key Basic Research Program of China (2015CB943101) and Foshan University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruby Yanru Chen-Tsai or Kui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, J., Xu, J., Chen-Tsai, R.Y. et al. Genome editing in livestock: Are we ready for a revolution in animal breeding industry?. Transgenic Res 26, 715–726 (2017). https://doi.org/10.1007/s11248-017-0049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-017-0049-7

Keywords

Navigation