Transgenic Research

, Volume 26, Issue 6, pp 763–774 | Cite as

Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm

  • Wen-bo Chen
  • Guo-qing Lu
  • Hong-mei Cheng
  • Chen-xi Liu
  • Yu-tao Xiao
  • Chao Xu
  • Zhi-cheng Shen
  • Mario Soberón
  • Alejandra Bravo
  • Kong-ming Wu
Original Paper


Wide planting of transgenic Bt cotton in China since 1997 to control cotton bollworm (Helicoverpa armigera) has increased yields and decreased insecticide use, but the evolution of resistance to Bt cotton by H. armigera remains a challenge. Toward developing a new generation of insect-resistant transgenic crops, a chimeric protein of Vip3Aa1 and Vip3Ac1, named Vip3AcAa, having a broader insecticidal spectrum, was specifically created previously in our laboratory. In this study, we investigated cross resistance and interactions between Vip3AcAa and Cry1Ac with three H. armigera strains, one that is susceptible and two that are Cry1Ac-resistant, to determine if Vip3AcAa is a good candidate for development the pyramid cotton with Cry1Ac toxin. Our results showed that evolution of insect resistance to Cry1Ac toxin did not influence the sensitivity of Cry1Ac-resistant strains to Vip3AcAa. For the strains examined, observed mortality was equivalent to the expected mortality for all the combinations of Vip3AcAa and Cry1Ac tested, reflecting independent activity between these two toxins. When this chimeric vip3AcAa gene and the cry1Ac gene were introduced into cotton, mortality rates of Cry1Ac resistant H. armigera larvae strains that fed on this new cotton increased significantly compared with larvae fed on non-Bt cotton and cotton producing only Cry1Ac. These results suggest that the Vip3AcAa protein is an excellent option for a “pyramid” strategy for pest resistance management in China.


Bacillus thuringiensis Vegetative insecticidal protein (Vip3AcAa) Helicoverpa armigera Cross resistance Transgenic cotton 



The authors are grateful for the supported by the National Natural Science Funds (Grant No. 31321004) and the Key Project for Breeding Genetic Modified Organisms (Grant Nos. 2014ZX0800912B and 2016ZX0812-004).

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

Supplementary material

11248_2017_48_MOESM1_ESM.tif (1.7 mb)
Supplementary material 1 (TIFF 1769 kb)
11248_2017_48_MOESM2_ESM.tif (4.8 mb)
Supplementary material 2 (TIFF 4901 kb)
11248_2017_48_MOESM3_ESM.doc (642 kb)
Supplementary material 3 (DOC 642 kb)


  1. Abdelkefi-Mesrati L, Boukedi H, Dammak-Karray M, Sellami-Boudawara T, Jaoua S, Tounsi S (2011) Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. J Invertebr Pathol 106:250–254CrossRefPubMedGoogle Scholar
  2. An JJ, Gao YL, Wu KM, Gould F, Gao JH, Shen ZC, Lei CL (2010) Vip3Aa tolerance response of Helicoverpa armigera populations from a Cry1Ac cotton planting region. J Econ Entomol 103:2169–2173CrossRefPubMedGoogle Scholar
  3. An J, Gao Y, Lei C, Gould F, Wu K (2014) Monitoring cotton bollworm resistance to Cry1Ac in two counties of northern China during 2009–2013. Pest Manag Sci 71:377–382CrossRefPubMedGoogle Scholar
  4. Barkhade UP, Thakare AS (2010) Protease mediated resistance mechanism to Cry1C and Vip3A in Spodoptera litura. Egypt Acad J Biol Sci 3:43–50Google Scholar
  5. Baxter SW, Badenespérez FR, Morrison A, Vogel H, Crickmore N, Kain W, Wang P, Heckel DG, Jiggins CD (2011) Parallel evolution of Bacillus thuringiensis toxin resistance in lepidoptera. Genetics 189:675–679CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berg JVD, Hilbeck A, Bohn T (2013) Pest resistance to Cry1Ab Bt maize: field resistance, contributing factors and lessons from South Africa. Crop Prot 54:154–160CrossRefGoogle Scholar
  7. Bergamasco VB, Mendes DRP, Fernandes OA, Desidério JA, Lemos MVF (2013) Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera). J Invertebr Pathol 112:152–158CrossRefPubMedGoogle Scholar
  8. Bernardi O, Amado D, Sousa RS, Segatti F, Fatoretto J, Burd AD, Omoto C (2014) Baseline Susceptibility and Monitoring of Brazilian Populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) and Diatraea saccharalis (Lepidoptera: Crambidae) to Vip3Aa20 Insecticidal Protein. J Econ Entomol 107:781–790CrossRefPubMedGoogle Scholar
  9. Bird LJ, Akhurst RJ (2007) Effects of host plant species on fitness costs of Bt resistance in Helicoverpa armigera (Lepidoptera: Noctuidae). Biol Control 40:196–203CrossRefGoogle Scholar
  10. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  11. Brévault T, Heuberger S, Zhang M, Ellers-Kirk C, Ni X, Masson L, Li X, Tabashnik BE, Carrière Y (2013) Potential shortfall of pyramided transgenic cotton for insect resistance management. Proc Natl Acad Sci USA 110:5806–5811CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cao G, Zhang L, Liang G, Li X, Wu K (2013) Involvement of nonbinding site proteinases in the development of resistance of Helicoverpa armigera (Lepidoptera: Noctuidae) to Cry1Ac. J Econ Entomol 106:2514–2521CrossRefPubMedGoogle Scholar
  13. Carrière Y, Crickmore N, Tabashnik BE (2015) Optimizing pyramided transgenic Bt crops for sustainable pest management. Nature Biotechnol 33:161–168CrossRefGoogle Scholar
  14. Carrière Y, Fabrick JA, Tabashnik BE (2016) Can pyramids and seed mixtures delay resistance to Bt crops? Trends Biotechnol 34:291–302CrossRefPubMedGoogle Scholar
  15. Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J (2016a) Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol Mol Biol R 80:329–350CrossRefGoogle Scholar
  16. Chakroun M, Banyuls N, Walsh T, Downes S, James B, Ferré J (2016b) Characterization of the resistance to Vip3Aa in Helicoverpa armigera from Australia and the role of midgut processing and receptor binding. Sci Rep 6:24311. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chang X, Liu GG, He KL, Shen ZC, Peng YF, Ye GY (2013) Efficacy evaluation of two transgenic maize events expressing fused proteins to Cry1Ab-susceptible and -resistant Ostrinia Fumacalis (Lepidoptera: Crambidae). J Econ Entomol 106:2548–2556CrossRefPubMedGoogle Scholar
  18. Chen W, Liu C, Xiao Y, Zhang D, Li X, Tabashnik BE, Wu K (2015) A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera. PLoS ONE 10:e0126288CrossRefPubMedPubMedCentralGoogle Scholar
  19. Comas C, Lumbierres B, Pons X, Albajes R (2014) No effects of Bacillus thuringiensis maize on nontarget organisms in the field in southern Europe: a meta-analysis of 26 arthropod taxa. Transgenic Res 23:135–143CrossRefPubMedGoogle Scholar
  20. Dong F, Shi R, Zhang S, Zhan T, Wu G, Shen J, Liu Z (2012) Fusing the vegetative insecticidal protein Vip3Aa7 and the N terminus of Cry9Ca improves toxicity against Plutella xylostella larvae. Appl Microbiol Biotechnol 96:921–929CrossRefPubMedGoogle Scholar
  21. Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Kozie MG, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci USA 93:5389–5394CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fang J, Xu X, Wang P, Zhao JZ, Shelton AM, Cheng J, Feng MG, Shen Z (2007) Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl Environ Microbiol 73:956–961CrossRefPubMedGoogle Scholar
  23. Gahan LJ, Pauchet Y, Vogel H, Heckel DG (2010) An ABC transporter mutation is correlated with Insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet 6:e1001248. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gao Y, Wu K, Gould F, Shen Z (2009) Cry2Ab tolerance response of Helicoverpa armigera (Lepidoptera: Noctuidae) populations from Cry1Ac cotton planting region. J Econ Entomol 102:1217–1223CrossRefPubMedGoogle Scholar
  25. Gassmann AJ, Petzold-Maxwell JL, Clifton EH, Dunbar MW, Hoffmann AM, Ingber DA, Keweshan RS (2014) Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. Proc Natl Acad Sci USA 111:5141–5146CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gayen S, Hossain MA, Sen SK (2012) Identification of the bioactive core component of the insecticidal Vip3A toxin peptide of Bacillus thuringiensis. J Plant Biochem Biotechnol 21:128–135CrossRefGoogle Scholar
  27. Hamadou-Charfi DB, Boukedi H, Abdelkefi-Mesrati L, Tounsi S, Jaoua S (2013) Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin. J Invertebr Pathol 114:139–143CrossRefPubMedGoogle Scholar
  28. James C (2015) Global status of commercialized biotech/GM Crops: 2015 ISAAA Briefs 51 Ithaca. International Service for the Acquisition of Agri-biotech Applications, NYGoogle Scholar
  29. Janmaat AF, Myers JH (2005) The cost of resistance to Bacillus thuringiensis varies with the host plant of Trichoplusia ni. P Roy Soc B-Bio Sci 272:1031–1038CrossRefGoogle Scholar
  30. Jin L, Zhang H, Lu Y, Yang Y, Wu K, Tabashnik BE, Wu Y (2015) Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops. Nat Biotechnol 33:169–174CrossRefPubMedGoogle Scholar
  31. Lee MK, Walters FS, Hart H, Palekar N, Chen JS (2003) The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin. Appl Environ Microbiol 69:4648–4657CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lee MK, Miles P, Chen JS (2006) Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. Biochem Bioph Res Co 339:1043–1047CrossRefGoogle Scholar
  33. Lemes AR, Davolos CC, Legori PC, Fernandes OA, Ferré J, Lemos MV, Desiderio JA (2014) Synergism and Antagonism between Bacillus thuringiensis Vip3A and Cry1 Proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda. PLoS ONE 9:e107196CrossRefPubMedPubMedCentralGoogle Scholar
  34. Liang G, Tan W, Guo Y (1999) An improvement in the technique of artificial rearing cotton bollworm. Plant Protect 25:15–17Google Scholar
  35. Liu F, Xu Z, Chang J, Chen J, Meng F, Zhu YC, Shen J (2008) Resistance allele frequency to Bt cotton in field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) in China. J Econ Entomol 101:933–943CrossRefPubMedGoogle Scholar
  36. Liu JG, Yang AZ, Shen XH, Hua BG, Shi GL (2011) Specific binding of activated Vip3Aa10 to Helicoverpa armigera brush border membrane vesicles results in pore formation. J Invertebr Pathol 108:92–97CrossRefPubMedGoogle Scholar
  37. Liu C, Xiao Y, Li X, Oppert B, Tabashnik BE, Wu K (2014) Cis-mediated down-regulation of a trypsin gene associated with Bt resistance in cotton bollworm. Sci Rep 4:7219CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365CrossRefPubMedGoogle Scholar
  39. Mahon RJ, Downes SJ, James B (2012) Vip3A resistance alleles exist at high levels in Australian targets before release of cotton expressing this toxin. PLoS ONE 7:e39192CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mendelsohn M, Kough J, Vaituzis Z, Matthews K (2003) Are Bt crops safe? Nat Biotechnol 21:1003–1009CrossRefPubMedGoogle Scholar
  41. Mesrati LA, Tounsi S, Jaoua S (2005) Characterization of a novel Vip3-type gene from Bacillus thuringiensis and evidence of its presence on a large plasmid. FEMS MicrobiolLett 244:353–358CrossRefGoogle Scholar
  42. Nicolia A, Manzo A, Veronesi F, Rosellini D (2014) An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol 34:77–88CrossRefPubMedGoogle Scholar
  43. Palma L, Muñoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6:3296–3325CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pickett BR, Gulzar A, Ferré J, Wright DJ (2017) Laboratory selection and characterization of resistance to the Bacillus thuringiensis Vip3Aa toxin in Heliothis virescens (Lepidoptera: Noctuidae). Appl Environ Microbiol. PubMedPubMedCentralGoogle Scholar
  45. Raymond B, Sayyed AH, Wright DJ (2007) Host plant and population determine the fitness costs of resistance to Bacillus thuringiensis. Biol Letters 3:82–85CrossRefGoogle Scholar
  46. Ruiz de Escudero I, Banyuls N, Bel Y, Maeztu M, Escriche B, Muñoz D, Caballero P, Ferré J (2014) A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests. J Invertebr Pathol 117:51–55CrossRefPubMedGoogle Scholar
  47. Russell RM, Robertson JL, Savin NE (1977) POLO: a new computer program for probit analysis. Bull Entomol Soc Am 23:209–213Google Scholar
  48. Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300CrossRefPubMedGoogle Scholar
  49. Sena JA, Hernández-Rodríguez CS, Ferré J (2009) Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites. Appl Environ Microbiol 75:2236–2237CrossRefPubMedPubMedCentralGoogle Scholar
  50. Swiatkiewicz S, Swiatkiewicz M, Arczewska-Wlosek A, Jozefiak D (2014) Genetically modified feeds and their effect on the metabolic parameters of food-producing animals: a review of recent studies. Anim Feed Sci Tech 198:1–19CrossRefGoogle Scholar
  51. Tabashnik BE, Brevault T, Carriere Y (2013a) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521CrossRefPubMedGoogle Scholar
  52. Tabashnik BE, Fabrick JA, Unnithan GC, Yelich AJ, Masson L, Zhang J, Bravo A, Soberón M (2013b) Efficacy of genetically modified Bt toxins alone and in combinations against pink bollworm resistant to Cry1Ac and Cry2Ab. PLoS ONE 8:e80496CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wang R, Tetreau G, Wang P (2016) Effect of crop plants on fitness costs associated with resistance to Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in cabbage loopers. Sci Rep 6:20959CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wei J, Guo Y, Liang G, Wu K, Zhang J, Tabashnik BE, Li X (2014) Cross-resistance and interactions between Bt toxins Cry1Ac and Cry2Ab against the cotton bollworm. Sci Rep 5:7714CrossRefGoogle Scholar
  55. Wei Y, Wu S, Yang Y, Wu Y (2017) Baseline susceptibility of field populations of Helicoverpa armigera to Bacillus thuringiensis Vip3Aa toxin and lack of cross-resistance between Vip3Aa and Cry toxins. Toxins 9:127CrossRefPubMedCentralGoogle Scholar
  56. Welch KL, Unnithan GC, Degain BA, Wei J, Zhang J, Li X, Tabashnik BE, Carrière Y (2015) Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea. J Invertebr Pathol 132:149–156CrossRefPubMedGoogle Scholar
  57. Wolfersberger MG, Luethy P, Maurer A, Parenti P, Sacchi VF, Giordana B, Hanozet GM (1987) Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp Biochem Physiol 86:301–308CrossRefGoogle Scholar
  58. Wu KM, Lu YH, Feng HQ, Jiang YY, Zhao JZ (2008) Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin–containing cotton. Science 321:1676–1678CrossRefPubMedGoogle Scholar
  59. Xiao Y, Zhang T, Liu C, Heckel DG, Li X, Tabashnik BE, Wu K (2014) Mis-splicing of the ABCC2 gene linked with Bt toxin resistance in Helicoverpa armigera. Sci Rep 4:6184CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3A Lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol 63:532–536PubMedPubMedCentralGoogle Scholar
  61. Yu X, Liu T, Sun Z, Guan P, Zhu J, Wang S, Li S, Deng Q, Wang L, Zheng A, Li P (2012) Co-expression and synergism analysis of Vip3Aa29 and Cyt2Aa3 insecticidal proteins from Bacillus thuringiensis. Curr Microbiol 64:326–331CrossRefPubMedGoogle Scholar
  62. Zhang H, Tian W, Zhao J, Jin L, Yang Y, Wu S, Tabashnik BE, Wu Y (2011) Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China. PLoS ONE 6:e22874CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zhang H, Tian W, Zhao J, Jin L, Yang J, Liu C, Yang Y, Wu S, Wu K, Cui J, Tabashnik BE, Wu Y (2012) Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. Proc Natl Acad Sci USA 109:10275–10280CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zhao Z, Li Y, Xiao Y, Ali A, Dhiloo KH, Chen W, Wu K (2016) Distribution and metabolism of Bt-Cry1Ac Toxin in tissues and organs of the cotton bollworm, Helicoverpa armigera. Toxins 8:212CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Wen-bo Chen
    • 1
    • 2
  • Guo-qing Lu
    • 3
  • Hong-mei Cheng
    • 3
  • Chen-xi Liu
    • 2
  • Yu-tao Xiao
    • 2
  • Chao Xu
    • 4
  • Zhi-cheng Shen
    • 4
  • Mario Soberón
    • 5
  • Alejandra Bravo
    • 5
  • Kong-ming Wu
    • 2
  1. 1.Fujian Provincial Key Laboratory of Insect Ecology, Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
  3. 3.Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
  4. 4.Institute of Insect Sciences, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
  5. 5.Instituto de BiotecnologiaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations