Skip to main content

RNAi-mediated resistance to whitefly (Bemisia tabaci) in genetically engineered lettuce (Lactuca sativa)

Abstract

RNA interference (RNAi)-based transgenic technologies have evolved as potent biochemical tools for silencing specific genes of plant pathogens and pests. The approach has been demonstrated to be useful in silencing genes in insect species. Here, we report on the successful construction of RNAi-based plasmid containing an interfering cassette designed to generate dsRNAs that target a novel v-ATPase transcript in whitefly (Bemisia tabaci), an important agricultural pest in tropical and sub-tropical regions. The presence of the transgene was confirmed in T0 and T1 generations of transgenic lettuce lines, segregating in a Mendelian fashion. Seven lines were infested with whiteflies and monitored over a period of 32 days. Analysis of mortality showed that within five days of feeding, insects on transgenic plants showed a mortality rate of 83.8–98.1%. In addition, a reduced number of eggs (95 fold less) was observed in flies feeding on transgenic lettuce plants than insects on control lines. Quantitative reverse transcription PCR showed decreased expression level of endogenous v-ATPase gene in whiteflies feeding on transgenic plants. This technology is a foundation for the production of whitefly-resistant commercial crops, improving agricultural sustainability and food security, reducing the use of more environmentally aggressive methods of pest control.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Andrade CM, Tinoco MLP, Rieth AF, Maia FCO, Aragão FJL (2016) Host-induced gene silencing in the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Plant Pathol 65:626–632

    CAS  Article  Google Scholar 

  2. Araujo RN, Santos A, Pinto FS, Gontijo NF, Lehane MJ, Pereira MH (2006) RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem Mol Biol 36:683–693

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Asokan R, Rebijith KB, Roopa HK, Kumar NKK (2015) Non-invasive delivery of dsGST is lethal to the sweet potato whitefly, Bemisia tabaci (G) (Hemiptera: Aleyrodidae). Appl Biochem Biotechnol 175:2288–2299

    CAS  Article  PubMed  Google Scholar 

  4. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleasu M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    CAS  Article  PubMed  Google Scholar 

  5. Beyenbach KW, Wieczorek H (2006) The V-type H + ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577–589

    CAS  Article  PubMed  Google Scholar 

  6. Bonfim K, Faria JC, Nogueira EOPL, Mendes EA, Aragão FJL (2007) RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe Interact 20:717–726

    CAS  Article  PubMed  Google Scholar 

  7. Brown JK, Bird J (1992) Whitefly-transmitted geminiviruses and associated disorders in the Americas and the Caribbean Basin. Plant Dis 76:220–225

    Article  Google Scholar 

  8. Brown JK, Zerbini FM, Navas-Castillo J, Moriones E, Ramos Sobrinho R, Silva JCF, Briddon RW, Hernandez-Zepeda C, Idris AM, Malathi VG, Martin DP, Rivera-Bustamante R, Ueda S, Varsani A (2015) Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch Virol 160:1593–1619

    CAS  Article  PubMed  Google Scholar 

  9. Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749

    CAS  Article  PubMed  Google Scholar 

  10. CABI (2017) Invasive species compendium. Bemisia tabaci (tobacco whitefly) Wallingford, UK: CAB International. http://www.cabi.org/isc/datasheet/8927. Accessed 26 June 2017

  11. Cathrin PB, Ghanim M (2014) Recent advances on interactions between the whitefly Bemisia tabaci and begomoviruses, with emphasis on Tomato yellow leaf curl virus. In: Gaur RK, Hohn T, Sharma P (eds) Plant Virus-Host Interaction: Molecular Approaches and Viral Evolution. Elsevier, Amsterdam, pp 79–103

    Chapter  Google Scholar 

  12. Chen X, Li L, Hu Q, Zhang B, Wu W (2015) Expression of dsRNA in recombinant Isaria fumosorosea strain targets the TLR7 gene in Bemisia tabaci. BMC Biotechnol 15:64

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cuthbertson AGS, Walters KFA (2005) Pathogenicity of the entomopathogenic fungus, Lecanicillium muscarium, against the sweet potato whitefly Bemisia tabaci, under laboratory and glasshouse conditions. Mycopathologia 160:315–319

    Article  PubMed  Google Scholar 

  14. Cuthbertson AGS, Walters KFA, Northing P (2005) The susceptibility of immature stages of Bemisia tabaci to the entomopathogenic fungus Lecanicillium muscarium on tomato and verbena foliage. Mycopathologia 159:23–29

    Article  PubMed  Google Scholar 

  15. Davies SA, Goodwin SF, Kelly DC, Wang Z, Sozen MA, Kaiser K, Dow JAT (1996) Analysis and inactivation of vha55, the gene encoding the vacuolar ATPase B-subunit in Drosophila melanogaster reveals a larval lethal phenotype. J Biol Chem 271:30677–30684

    CAS  Article  PubMed  Google Scholar 

  16. Dias BBA, Cunha WG, Morais LS, Vianna GR, Rech EL, Capdeville G, Aragão FJL (2006) Expression of an oxalate decarboxylase gene from Flammulina sp in transgenic lettuce (Lactuca sativa) plants and resistance to Sclerotinia sclerotiorum. Plant Pathol 55:187–193

    CAS  Article  Google Scholar 

  17. Dow JAT, Davies SA, Gua Y, Graham S, Finbow ME, Kaiser K (1997) Molecular genetic analysis of v_ATPase function in Drosophila melanogaster. J Exp Biol 200:237–245

    CAS  PubMed  Google Scholar 

  18. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  19. Faria M, Wraight SP (2001) Biological control of Bemisia tabaci with fungi. Crop Prot 20:767–778

    Article  Google Scholar 

  20. Faria JC, Aragão FJL, Souza T, Quintela E, Kitajima EW, Ribeiro SG (2016) Golden mosaic of common beans in Brazil: management with a transgenic approach. APS Features 10:1094

    Google Scholar 

  21. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CAS  Article  PubMed  Google Scholar 

  22. Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929

    CAS  Article  PubMed  Google Scholar 

  23. Gerling D, Alomar O, Arnó J (2001) Biological control of Bemisia tabaci using predators and parasitoids. Crop Prot 20:779–799

    Article  Google Scholar 

  24. Ghanim M, Kontsedalov S, Czosnek H (2007) Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochem Mol Biol 37:732–738

    CAS  Article  PubMed  Google Scholar 

  25. Gordon KHJ, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232

    CAS  Article  PubMed  Google Scholar 

  26. Ibrahim AB, Aragão FJL (2015) RNAi-mediated resistance to viruses in genetically engineered plants. Methods Mol Biol 1287:81–92

    CAS  Article  PubMed  Google Scholar 

  27. Karatolos N, Denholm I, Williamson M, Nauen R, Gorman K (2010) Incidence and characterization of resistance to neonicotinoid insecticides and pymetrozine in the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae). Pest Manag Sci 66:1304–1307

    CAS  Article  PubMed  Google Scholar 

  28. Katoch R, Thakur N (2012) Insect gut nucleases: a challenge for RNA interference mediated insect control strategies. Int J Biochem Biotechnol 1:198–203

    Google Scholar 

  29. Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92

    CAS  Article  PubMed  Google Scholar 

  30. Kumar M, Gupta GP, Rajam MV (2009) Silencing of acetylcholinesterase gene of Helicoperva armigera by siRNA affects larval growth and its life cycle. J Insect Physiol 55:273–278

    CAS  Article  PubMed  Google Scholar 

  31. Kumar P, Pandit SS, Baldwin IT (2012) Tobacco rattle virus vector: a rapid and transient means of silencing Manduca sexta genes by plant mediated RNA interference. PLoS ONE 7:e31347

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Li SJ, Xue X, Ahmed MZ, Ren S-X, Du Y-Z, Wu J-H, Cuthbertson AGS, Qui B-L (2011) Host plants and natural enemies of Bemisia tabaci (Hemiptera: Aleyrodidae) in China. Insect Sci 18:101–120

    CAS  Article  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{- \Delta \Delta {\rm C}_{\rm T}}\) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    CAS  Article  PubMed  Google Scholar 

  34. Luan JB, Ghanim M, Liu SS, Czosnek H (2013) Silencing the ecdysone synthesis and signaling pathway genes disrupts nymphal development in the whitefly. Insect Biochem Mol Biol 43:740–746

    CAS  Article  PubMed  Google Scholar 

  35. Malik HJ, Raza A, Amin I, Scheffler JA, Scheffler EB, Brown JK, Mansoor S (2016) RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco. Plant Sci Rep 6:38469

    CAS  PubMed  Google Scholar 

  36. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    CAS  Article  PubMed  Google Scholar 

  37. Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Price DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400

    CAS  Article  PubMed  Google Scholar 

  39. Raza A, Malik HJ, Shafiq M, Amin I, Scheffler JA, Scheffler EB, Mansoor S (2016) RNA interference based approach to down regulate osmoregulators of whitefly (Bemisia tabaci): potential technology for the control of whitefly. PLoS ONE 11:e0153883

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rivnay T, Gerling D (1987) Aphelinidae parasitoids (Hymenoptera: Chalcidoidea) of whiteflies (Hemiptera: Aleyrodidae) in Israel, with description of three new species. Entomophaga 32:463–475

    Article  Google Scholar 

  41. Scott JG, Michel K, Bartholomay LC, Siegfried BD, Hunter WB, Smagghe G, Zhu KY, Douglas AE (2013) Towards the elements of successful insect RNAi. J Insect Physiol 59:1212–1221

    CAS  Article  PubMed  Google Scholar 

  42. Shah MMR, Liu T-X (2013) Feeding experience of Bemisia tabaci (Hemiptera: Aleyrodidae) affects their performance on different host plants. PLoS ONE 8(10):e77368

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Thakur N, Upadhyay SK, Verma PC, Chandrashekar K, Tuli R, Singh PK (2014) Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase a gene. PLoS ONE 9:e87235

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tinoco MLP, Dias BBA, Dall’Astta RC, Pamphile JA, Aragão FJL (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8:27

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:R10

    Article  PubMed  PubMed Central  Google Scholar 

  46. Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391

    CAS  Article  PubMed  Google Scholar 

  47. Upadhyay SK, Chandrashekar K, Thakur N, Verma PC, Borgio JF, Singh PK, Tuli R (2011) RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. J Biosci 36:153–161

    CAS  Article  PubMed  Google Scholar 

  48. Wang Z, Yan H, Yang Y, Wu Y (2010) Biotype and insecticide resistance status of the whitefly (Bemisia tabaci) from China. Pest Manag Sci 66:1360–1366

    CAS  Article  PubMed  Google Scholar 

  49. Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Yu N, Christiaens O, Liu J, Niu J, Cappelle K, Caccia S, Huvenne H, Smagghe G (2012) Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci 20:4–14

    CAS  Article  PubMed  Google Scholar 

  51. Zha W, Peng X, Chen R, Du B, Zhu L, He G (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the Hemipteran insect Nilaparvata lugens. PLoS ONE 5:e20504

    Article  Google Scholar 

  52. Zhang H, Li HC, Miao XX (2013) Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Insect Sci 20:15–30

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of CNPq (Brazil). AB Ibrahim was supported by a fellowship from CAPES (Brazil). We are thankful to Dr. Josias Faria (Embrapa Arroz e Feijão) for providing whiteflies and Dr. Mirella Pupo (UFRJ) for assisting with statistical analyses.

Funding

Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francisco J. L. Aragão.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 360 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.B., Monteiro, T.R., Cabral, G.B. et al. RNAi-mediated resistance to whitefly (Bemisia tabaci) in genetically engineered lettuce (Lactuca sativa). Transgenic Res 26, 613–624 (2017). https://doi.org/10.1007/s11248-017-0035-0

Download citation

Keywords

  • ATPase
  • Genetic engineering
  • Horticultural crop
  • Insect resistance
  • RNA interference
  • siRNA