Skip to main content

Advertisement

Log in

Tβ4-overexpression based on the piggyBac transposon system in cashmere goats alters hair fiber characteristics

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Increasing cashmere yield is one of the vital aims of cashmere goats breeding. Compared to traditional breeding methods, transgenic technology is more efficient and the piggyBac (PB) transposon system has been widely applied to generate transgenic animals. For the present study, donor fibroblasts were stably transfected via a PB donor vector containing the coding sequence of cashmere goat thymosin beta-4 (Tβ4) and driven by a hair follicle-specific promoter, the keratin-associated protein 6.1 (KAP6.1) promoter. To obtain genetically modified cells as nuclear donors, we co-transfected donor vectors into fetal fibroblasts of cashmere goats. Five transgenic cashmere goats were generated following somatic cell nuclear transfer (SCNT). Via determination of the copy numbers and integration sites, the Tβ4 gene was successfully inserted into the goat genome. Histological examination of skin tissue revealed that Tβ4-overexpressing, transgenic goats had a higher secondary to primary hair follicle (S/P) ratio compared to wild type goats. This indicates that Tβ4-overexpressing goats possess increased numbers of secondary hair follicles (SHF). Our results indicate that Tβ4-overexpression in cashmere goats could be a feasible strategy to increase cashmere yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baguisi A et al (1999) Production of goats by somatic cell nuclear transfer. Nat Biotech 17:456–461

    Article  CAS  Google Scholar 

  • Bai DP, Yang MM, Chen YL (2012) PiggyBac transposon-mediated gene transfer in Cashmere goat fetal fibroblast cells. Biosci Biotechnol Biochem 76:933–937. doi:10.1271/bbb.110939

    Article  CAS  PubMed  Google Scholar 

  • Batista RI et al (2014) Methodological strategies for transgene copy number quantification in goats (Capra hircus) using real-time PCR. Biotechnol Prog 30:1390–1400

    Article  CAS  PubMed  Google Scholar 

  • Bubner B, Baldwin IT (2004) Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep 23:263–271

    Article  CAS  PubMed  Google Scholar 

  • Cary LC, Goebel M, Corsaro BG, Wang H-G, Rosen E, Fraser M (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156–169

    Article  CAS  PubMed  Google Scholar 

  • Cha H-J, Jeong M-J, Kleinman HK (2003) Role of thymosin β4 in tumor metastasis and angiogenesis. J Natl Cancer Inst 95:1674–1680

    Article  CAS  PubMed  Google Scholar 

  • Cha HJ, Philp D, Lee SH, Moon HS, Kleinman HK, Nakamura T (2009) Over-expression of thymosin beta4 promotes abnormal tooth development and stimulation of hair growth. Int J Dev Biol 54(1):135–140

    Article  Google Scholar 

  • Choi YH, Hinrichs K (2003) Production of nuclear transfer horse embryos by piezo-driven injection of somatic cell nuclei and activation with stallion sperm cytosolic extract US20030131371

  • Denning C, Priddle H (2003) New frontiers in gene targeting and cloning: success, application and challenges in domestic animals and human embryonic stem cells. Reproduction 126:1–11

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483. doi:10.1016/j.cell.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  • Ellis J, Yao S (2005) Retrovirus silencing and vector design: relevance to normal and cancer stem cells? Curr Gene Ther 5:367–373

    Article  CAS  PubMed  Google Scholar 

  • Galbraith H (2010) Fundamental hair follicle biology and fine fibre production in animals. Animal 4:1490–1509

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Liang H, Hou F, Zhang Z, Nuo M, Guo X, Liu D (2015) Thymosin beta-4 induces mouse hair growth. PLoS One 10:e0130040. doi:10.1371/journal.pone.0130040

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao X et al (2016) Role of thymosin beta 4 in hair growth. Mol Genet Genom 291:1639–1646. doi:10.1007/s00438-016-1207-y

    Article  CAS  Google Scholar 

  • Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277:225–228

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AL, Hannappel E, Kleinman HK (2005) Thymosin β 4: actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med 11:421–429

    Article  CAS  PubMed  Google Scholar 

  • Grant DS, Rose W, Yaen C, Goldstein A, Martinez J, Kleinman H (1999) Thymosin β4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis 3:125–135

    Article  CAS  PubMed  Google Scholar 

  • Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19:2003–2012

    Article  CAS  PubMed  Google Scholar 

  • Hotta A, Ellis J (2008) Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. J Cell Biochem 105:940–948. doi:10.1002/jcb.21912

    Article  CAS  PubMed  Google Scholar 

  • Huang X et al (2010) Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Mol Ther 18:1803–1813. doi:10.1038/mt.2010.141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johann U et al (2010) Helper-independent piggyBac plasmids for gene delivery approaches: strategies for avoiding potential genotoxic effects. Proc Natl Acad Sci USA 107:8117–8122

    Article  Google Scholar 

  • Kang F, Purich DL, Southwick FS (1999) Profilin promotes barbed-end actin filament assembly without lowering the critical concentration. J Biol Chem 274:36963–36972

    Article  CAS  PubMed  Google Scholar 

  • Lai L et al (2002) Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Mol Reprod Dev 62:300–306

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Li Y, Song Y, Song X (2005) Genetic parameter estimates of follicle traits in liaoning cashmere goat. J Jilin Agric Univ 27:323–327

    Google Scholar 

  • Malinda K, Goldstein A, Kleinman H (1997) Thymosin beta 4 stimulates directional migration of human umbilical vein endothelial cells. FASEB J 11:474–481

    CAS  PubMed  Google Scholar 

  • McCreath KJ, Howcroft J, Campbell K, Colman A, Schnieke A, Kind A (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405:1066–1069

    Article  CAS  PubMed  Google Scholar 

  • Moon E-Y, Song J-H, Yang K-H (2007) Actin-sequestering protein, thymosin-beta-4 (TB4), inhibits caspase-3 activation in paclitaxel-induced tumor cell death. Oncol Res Featur Preclin Clin Cancer Ther 16:507–516

    CAS  Google Scholar 

  • Oh IS, So SS, Jahng KY, Kim HG (2002) Hepatocyte growth factor upregulates thymosin β4 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 296:401–405

    Article  CAS  PubMed  Google Scholar 

  • Philp D, St-Surin S, Cha HJ, Moon HS, Kleinman HK, Elkin M (2007) Thymosin beta 4 induces hair growth via stem cell migration and differentiation. Ann NY Acad Sci 1112:95–103. doi:10.1196/annals.1415.009

    Article  CAS  PubMed  Google Scholar 

  • Richt JA et al (2007) Production of cattle lacking prion protein. Nat Biotechnol 25:132–138

    Article  CAS  PubMed  Google Scholar 

  • Sribenja S, Wongkham S, Wongkham C, Yao Q, Chen C (2013) Roles and mechanisms of β-thymosins in cell migration and cancer metastasis: an update. Cancer Invest 31:103–110

    Article  CAS  PubMed  Google Scholar 

  • Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374

    Article  CAS  PubMed  Google Scholar 

  • Wang W-S, Chen P-M, Hsiao H-L, Wang H-S, Liang W-Y, Su Y (2004) Overexpression of the thymosin β-4 gene is associated with increased invasion of SW480 colon carcinoma cells and the distant metastasis of human colorectal carcinoma. Oncogene 23:6666–6671

    Article  CAS  PubMed  Google Scholar 

  • Wani NA, Wernery U, Hassan F, Wernery R, Skidmore J (2010) Production of the first cloned camel by somatic cell nuclear transfer. Biol Reprod 82:373–379

    Article  CAS  PubMed  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810

    Article  CAS  PubMed  Google Scholar 

  • Wu XJ, Zhu JW, Jing J, Xue D, Liu H, Zheng M, Lu ZF (2013) VEGF 165 modulates proliferation, adhesion, migration and differentiation of cultured human outer root sheath cells from central hair follicle epithelium through VEGFR-2 activation in vitro. J Dermatol Sci 73:152–160

    Article  PubMed  Google Scholar 

  • Yusa K (2015) piggyBac transposon microbiology spectrum, 3. doi:10.1128/microbiolspec.MDNA3-0028-2014

  • Zhang CL, Jin quan LI, Yin J, Zhang YB, Miao X (2005) Study on hair follicles periodical variety in inner Mongolia Arbas White Cashmere goats. Chin J Anim Sci 41(9):10

    Google Scholar 

  • Zhang YJ, Yin J, Li J, Li C (2007) Study on hair follicle structure and morphogenesis of the inner Mongolian Arbas cashmere goat. Sci Agric Sin 40:1017–1023

    Google Scholar 

  • Zhang W, Allain D, Su R, Li J, Wang W (2013) Genes involved in hair follicle cycle of cashmere goat. In: 64th Annual meeting of the European Federation of Animal Science (EAAP), Wageningen Academic Publisher, Nantes, 26–30 August 2013

  • Zhao H-Q, Liu Z-Q, Nie Y-M, Mai M, Zhang F, Zhang X, Han T (2002) Studies on skin follicle structure of the southern Xinjing Cashmere Goat [J] Xinjiang. Agric Sci 4:001

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank those who assisted with goat herd management, lamb care, phenotyping and technical work in the lab related to this project including: Xiaobing Zhou, Zhiming Dong, Yutai Liu, Yin Gao, Chongqi Tian, Guangxian Zhou, Miaohan Jin and Danju Kang. This work is supported by grants from the Major Projects for New Varieties of Genetically Modified Organisms of China (2014ZX08008-002), and by National Natural Science Foundation of China (31372279, 31402038, 31572369), as well as by China Agriculture Research System (CARS-40-13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Qu or Yulin Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

B. Shi, Q. Ding and X. He contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, B., Ding, Q., He, X. et al. Tβ4-overexpression based on the piggyBac transposon system in cashmere goats alters hair fiber characteristics. Transgenic Res 26, 77–85 (2017). https://doi.org/10.1007/s11248-016-9988-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-016-9988-7

Keywords

Navigation