Skip to main content

Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains

Abstract

Phytate is a major constituent of wheat seeds and chelates metal ions, thus reducing their bioavailability and so the nutritional value of grains. Transgenic plants expressing heterologous phytase are expected to enhance degradation of phytic acid stored in seeds and are proposed to increase the in vitro bioavailability of mineral nutrients. Wheat transgenic plants expressing Aspergillus japonicus phytase gene (phyA) in wheat endosperm were developed till T3 generation. The transgenic lines exhibited 18–99 % increase in phytase activity and 12–76 % reduction of phytic acid content in seeds. The minimum phytic acid content was observed in chapatti (Asian bread) as compared to flour and dough. The transcript profiling of phyA mRNA indicated twofold to ninefold higher expression as compared to non transgenic controls. There was no significant difference in grain nutrient composition of transgenic and non-transgenic seeds. In vitro bioavailability assay for iron and zinc in dough and chapatti of transgenic lines revealed a significant increase in iron and zinc contents. The development of nutritionally enhanced cereals is a step forward to combat nutrition deficiency for iron and zinc in malnourished human population, especially women and children.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abid N, Maqbool A, Malik KA (2014) Screening commercial wheat (Triticum aestivum L.) varieties for Agrobacterium mediated transformation ability. Pak J Agric Sci 51(1):83–89

    Google Scholar 

  • Akhtar S, Saeed A, Irfan M, Malik KA (2012) In vitro dephytinization and bioavailability of essential minerals in several wheat varieties. J Cereal Sci 56(3):741–746. doi:10.1016/j.jcs.2012.08.017

    Article  Google Scholar 

  • Ali N, Paul S, Gayen D, Sarkar SN, Datta K, Datta SK (2013) Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1). PLoS One 8(7):1–12

    Google Scholar 

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31(5):537–548

    CAS  Article  PubMed  Google Scholar 

  • AOAC (2005) Official methods of analysis of AOAC international, 18th edn. AOAC International, Maryland

    Google Scholar 

  • AOAC (2012) Official methods of analysis of AOAC international, 19th edn. AOAC International, Washington

    Google Scholar 

  • Borg S, Brinch-Pedersen H, Tauris B, Holm PB (2009) Iron transport, deposition and bioavailability in the wheat and barley grain. Plant Soil 325(1):15–24

    CAS  Article  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification A sustainable agricultural strategy for reducing micronutrient malnutrition in the Global South. Crop Sci 50(S1):S20–S32

    Article  Google Scholar 

  • Brinch-Pedersen H, Olesen H, Soren K, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6(2):195–206

    CAS  Article  Google Scholar 

  • Brinch-Pedersen H, Hatzack F, Sorensen LD, Holm PB (2003) Concerted action of endogenous and heterologous phytase on phytic acid degradation in seed of transgenic wheat (Triticumaestivum L.). Transgenic Res 12(6):649–659

    CAS  Article  PubMed  Google Scholar 

  • Butaye KMJ, Cammue BPA, Delaure SL, De Bolle FC (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16(1):79–91

    Article  Google Scholar 

  • Chen R, Xue G, Chen P, Yao B, Yang W, Ma Q (2008) Transgenic maize plants expressing a fungal phytase gene. Transgenic Res 17(4):633–643

    CAS  Article  PubMed  Google Scholar 

  • Clugston GA, Smith TE (2002) Global nutrition problems and novel foods. Asia Pac J Clin Nutr 11(S6):S100–S111. doi:10.1046/j.1440-6047.11.s6.1.x

    CAS  Article  Google Scholar 

  • Dionisio G, Madsen CK, Holm PB, Welinder KG, Jorgensen M, Stoger E, Arcalis E, Brinch-Pedersen H (2011) Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice. Plant Physiol 156(3):1087–1100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the level of bioavailable iron. Plant Mol Biol 59(6):869–880

    CAS  Article  PubMed  Google Scholar 

  • Erdal I, Yilmazb A, Tabanc S, Ekerd S, Torund B, Cakmak I (2002) Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization. J Plant Nutr 25(1):113–127. doi:10.1081/PLN-100108784

    CAS  Article  Google Scholar 

  • FAO statistical pocketbook (2015) Summary report. Rome, Food and Agriculture Organization of the United Nations. http://www.fao.org/economic/ess/ess-publications/ess-yearbook/en/#.Vm6KanlukdU

  • Fonseca-Maldonado R, Maller A, Bonneil E, Thibault P, Botelho-Machado C, Ward RJ, Polizeli MLTM (2014) Biochemical properties of glycosylation and characterization of a histidine acid phosphatase (phytase) expressed in Pichia pastoris. Protein Expr Purif 99:43–49

    CAS  Article  PubMed  Google Scholar 

  • Frontela C, Scarino ML, Ferruzza S, Ros G, Martinez C (2009) Effect of dephytinization on bioavailability of iron, calcium and zinc from infant cereals assessed in the Caco-2 cell model. World J Gastroenterol 15(16):1977–1984

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Furtado A, Henry RJ, Alessandro PA (2009) Analysis of promoters in transgenic barley and wheat. Plant Biotechnol J 7:240–253

    CAS  Article  PubMed  Google Scholar 

  • Gao XR, Wang GK, Su Q, Wang Y, An LJ (2007) Phytase expression in transgenic soybeans: stable transformation with a vector-less construct. Biotechnol Lett 29(11):1781–1787

    CAS  Article  PubMed  Google Scholar 

  • Global Nutrition Report (2014) Actions and accountability to accelerate the world’s progress on nutrition. International Food Policy Research Institute (IFPRI). https://www.ifpri.org/publication/global-nutrition-report-2014-actions-and-accountability-accelerate-worlds-progress

  • Gontia I, Tantwai K, Rajput LPS, Tiwari S (2012) Transgenic plants expressing phytase gene of microbial origin and their prospective application as feed. Food Technol Biotechnol 50(1):3–10

    CAS  Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    CAS  Article  PubMed  Google Scholar 

  • Hotz C, McClafferty B (2007) From harvest to health: challenges for developing biofortified staple foods and determining their impact on micronutrient status. Food Nutr Bull 28(2 suppl2):S271–S279

    Article  PubMed  Google Scholar 

  • Ikeda M, Ikui A, Komiyama A, Kobayashi D, Tanaka M (2008) Causative factors of taste disorders in the elderly and therapeutic effects of zinc. J Laryngol Otol 122(2):155–160

    CAS  Article  PubMed  Google Scholar 

  • Jin F, Frohman C, Thannhauser TW, Welch RM, Glahn RP (2009) Effects of ascorbic acid, phytic acid and tannic acid on iron bioavailability from reconstituted ferritin measured by an in vitro digestion–Caco-2 cell model. Br J Nutr 101(7):972–981. doi:10.1017/S0007114508055621

    CAS  Article  PubMed  Google Scholar 

  • Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41(2):137–147

    CAS  Article  Google Scholar 

  • Kang TJ, Yang MS (2004) Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants. BMC Biotechnol 4:20. doi:10.1186/1472-6750-4-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy G, Nantel G, Shetty P (2003) The scourge of “hidden hunger”: global dimensions of micronutrient deficiencies. Food Nutr Agric 32:8–16

    Google Scholar 

  • Khush GS (2008) Biofortification of crops for reducing malnutrition. Proc Indian Natl Sci Acad 74(1):21–25

    CAS  Google Scholar 

  • Latta M, Eskin M (1980) A simple and rapid colorimetric method for phytate determination. J Agric Food Chem 28(6):1313–1315

    CAS  Article  Google Scholar 

  • Lee AI, Okam MM (2011) Anemia in pregnancy. Hematol Oncol Clin N Am 25(2):241–259. doi:10.1016/j.hoc.2011.02.001

    Article  Google Scholar 

  • Liu Q, Quan LQ, Feng J, Li Z, Jiang W, Hmei GM, Hong QY (2006) Transgenic expression of the recombinant phytase in rice (Oryza sativa). Rice Sci 13(2):79–84

    Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397

    CAS  Article  Google Scholar 

  • Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20(1):3–18

    CAS  Article  PubMed  Google Scholar 

  • Miller DD, Schricker BR, Rasmussen RR, Van Campen D (1981) An in vitro method for estimation of iron availability from meals. Am J Clin Nutr 34(10):2248–2256

    CAS  PubMed  Google Scholar 

  • Munro S, Pelham HRB (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48:899–907

    CAS  Article  PubMed  Google Scholar 

  • Nakano T, Joh T, Tokumoto E, Hayakawa T (1999) Purification and characterization of phytase from wheat bran of Triticum aestivum L. cv. Nourin #61. Food Sci Technol Res 5(1):18–23

    CAS  Article  Google Scholar 

  • Naqvi S, Zhua C, Farrea G, Ramessara K, Bassiea L, Breitenbach J, Conesac DP, Rosc G, Sandmann G, Capella T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. PNAS 106(19):7762–7767

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Naseer HM, Bashir A, Khatoon A, Iqbal N, Zafar Y, Malik KA (2010) Molecular characterization and transcriptome profiling of EXPANSIN genes isolated from Calotropis procera fibers. Electron J Biotechnol. doi:10.2225/vol13-issue6-fulltext-7

    Google Scholar 

  • National Nutrition Survey of Pakistan (2011) Food insecurity affecting 60% of women and children. https://www.humanitarianresponse.info/system/files/documents/files/59_National%20Nutrition%20Survey-2011.pdf

  • Pakistan Agricultural Research Council (2013) Wheat in Pakistan. A Status Paper. National Coordinator Wheat, Plant Sciences Division, Pakistan Agricultural Research Council, Islamabad,Pakistan. http://www.parc.gov.pk/files/parc_pk/January-15/Status%20Papers/status%20paper%20Wheat%20in%20Pakistan.pdf

  • Paul S, Ali N, Sarkar SN, Datta SK, Datta K (2013) Loading and bioavailability of iron in cereal grains. Plant Cell Tiss Org 113(3):363–373

    CAS  Article  Google Scholar 

  • Pearson’s composition and analysis of foods 9th edn (1991). http://www.mohfw.nic.in/WriteReadData/l892s/Beverages%20_%20SugarsConfectionery%20-Sep%2005-71139594.pdf

  • Pelham HRB (1988) Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J 7:913–918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng R-H, Yao Q-H, Xiong A-S, Cheng Z-M, Li Y (2006) Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. Plant Cell Rep 25(2):124–132

    CAS  Article  PubMed  Google Scholar 

  • Perez-Massot E, Banakar R, Gomez-Galera S, Zorrilla-Lopez U, Sanahuja G, Arjo G, Miralpeix B, Vamvaka E, Farre G, Rivera SM, Dashevskaya S, Berman J, Sabalza M, Yuan D, Bai C, Bassie L, Twyman RM, Capell T, Christou P, Zhu C (2013) The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. Genes Nutr 8(1):29–41. doi:10.1007/s12263-012-0315-5

    Article  PubMed  Google Scholar 

  • Peterson TN, Brunak S, Von-Heijne G, Nielson H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. doi:10.1038/nmeth.1701

    Article  Google Scholar 

  • Promdonkoy P, Tang K, Sornlake W, Harnpicharnchai P, Kobayashi RS, Ruanglek V, Upathanpreecha T, Vesaratchavest M, Eurwilaichitr L, Tanapongpipat S (2009) Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris. Federation of European Microbiological Societies Published by Blackwell Publishing Ltd. FEMS Microbiol Lett 290(1):18–24. doi:10.1111/j.1574-6968.2008.01399.x

    CAS  Article  PubMed  Google Scholar 

  • Raboy V (2001) Seeds for a better future: low phytate’ grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6(10):458–462

    CAS  Article  PubMed  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2000) Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ 23(4):397–405. doi:10.1046/j.1365-3040.2000.00557.x

    CAS  Article  Google Scholar 

  • Scientific Advisory Committee on Nutrition (SACN) (2010) iron and health report. Stationary Office. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/339309/SACN_Iron_and_Health_Report.pdf

  • Shen Y, Wang H, Pan G (2008) Improving inorganic phosphorus content in maize seeds by introduction of phytase gene. Biotechnol 7(2):323–327

    CAS  Article  Google Scholar 

  • Singh B, Satyanarayana T (2015) Fungal phytases: characteristics and amelioration of nutritional quality and growth of non-ruminants. J Anim Physiol Anim Nutr 99(4):646–660

    CAS  Article  Google Scholar 

  • Sorensen MB, Cameron-Mills V, Brandt A (1989) Transcriptional and post-transcriptional regulation of gene expression in developing barley endosperm. Mol Gen Genet 217:195–201

    Article  Google Scholar 

  • Sorensen MB, Muller M, Skerritt J, Simpson D (1996) Hordein promoter methylation and transcriptional activity in wild type and mutant barley endosperm. Mol Gen Genet 250:750–760

    CAS  Article  PubMed  Google Scholar 

  • Stornaiuolo M, Lotti LV, Borgese N, Torrisi MR, Mottola G, Martire G, Bonatti S (2003) KDEL and KKXX retrieval signals appended to the same reporter protein determine different trafficking between endoplasmic reticulum, intermediate compartment, and golgi complex. Mol Biol Cell 14:889–902

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84

    CAS  Article  PubMed  Google Scholar 

  • Wodzinski RJ, Ullah AHJ (1996) Phytase. Adv Appl Microbiol 42:263–302

    CAS  Article  PubMed  Google Scholar 

  • Wu H, Doherty A, Jones HD (2008) Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes. Transgenic Res 17(3):425–436

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The contributions of PCSIR Laboratories, Lahore, Wheat Research Institute (WRI), Faisalabad and National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad are highly acknowledged for providing their lab facilities, equipment’s and biosafety analysis. We also acknowledge assistance of Dr. Henrik Brinch-Pedersen for allowing training of Dr. Asma Maqbool in his lab in Denmark.

Funding

This study was supported by Punjab Agriculture Research Board (PARB) Project #188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kauser A. Malik.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abid, N., Khatoon, A., Maqbool, A. et al. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains. Transgenic Res 26, 109–122 (2017). https://doi.org/10.1007/s11248-016-9983-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-016-9983-z

Keywords

  • Phytase
  • Phytic acid
  • Bioavailability
  • Transgenic wheat
  • Iron
  • Zinc