Advertisement

Transgenic Research

, Volume 25, Issue 4, pp 477–489 | Cite as

Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid

  • Gemma Farré
  • Laura Perez-Fons
  • Mathilde Decourcelle
  • Jürgen Breitenbach
  • Sonia Hem
  • Changfu Zhu
  • Teresa Capell
  • Paul Christou
  • Paul D. Fraser
  • Gerhard SandmannEmail author
Original Paper

Abstract

Maize was genetically engineered for the biosynthesis of the high value carotenoid astaxanthin in the kernel endosperm. Introduction of a β-carotene hydroxylase and a β-carotene ketolase into a white maize genetic background extended the carotenoid pathway to astaxanthin. Simultaneously, phytoene synthase, the controlling enzyme of carotenogenesis, was over-expressed for enhanced carotenoid production and lycopene ε-cyclase was knocked-down to direct more precursors into the β-branch of the extended ketocarotenoid pathway which ends with astaxanthin. This astaxanthin-accumulating transgenic line was crossed into a high oil- maize genotype in order to increase the storage capacity for lipophilic astaxanthin. The high oil astaxanthin hybrid was compared to its astaxanthin producing parent. We report an in depth metabolomic and proteomic analysis which revealed major up- or down- regulation of genes involved in primary metabolism. Specifically, amino acid biosynthesis and the citric acid cycle which compete with the synthesis or utilization of pyruvate and glyceraldehyde 3-phosphate, the precursors for carotenogenesis, were down-regulated. Nevertheless, principal component analysis demonstrated that this compositional change is within the range of the two wild type parents used to generate the high oil producing astaxanthin hybrid.

Keywords

Astaxanthin Genetically engineered carotenoid biosynthesis GM maize Metabolomics Transcriptomics 

Notes

Acknowledgments

Funding through the Plant KBBE project CaroMaize is gratefully acknowledged. Further support to PC was by the Ministerio de Economia y Competitividad, Spain (BIO2014-54441-P, BIO2011-22525) and a European Research Council Advanced Grant (BIOFORCE); PROGRAMA ESTATAL DE INVESTIGACIÓN CIENTÍFICA Y TÉCNICA DE EXCELENCIA, Spain (BIO2015-71703-REDT). PDF and LP are grateful for funding from the EU FP7 project DISCO grant number 613513. We thank Sys2Diag team (CNRS, France) for statistical analyses of proteomic data and particularly Nicolas Salvetat and Franck Molina.

References

  1. Alfonso AP, Val DL, Shachar-Hill T (2011) Central metabolic fluxes in the endosperm of developing maize seeds and their implications for metabolic engineering. Metab Eng 13:96–107CrossRefGoogle Scholar
  2. Ambati RR, Moi PS, Ravi S, Aswathanarayana RG (2014) Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Mar Drugs 12:128–152CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berman J, Zorrilla-López U, Farré G, Zhu C, Sandmann G, Twyman RM, Capell T, Christou C (2015) Nutritionally important carotenoids as consumer products. Phytochem Rev 14:727–743CrossRefGoogle Scholar
  4. Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids Handbook. Birkhäuser Verlag, BaselCrossRefGoogle Scholar
  5. Carapito C, Burel A, Guterl P, Walter A, Varrier F, Bertile F, Van Dorsselaer A (2014) MSDA, a proteomics software suite for in-depth mass spectrometry data analysis using grid computing. Proteomics 14:1014–1019CrossRefPubMedGoogle Scholar
  6. Colot V, Roberts LS, Kavanagh TA, Bevan MW, Thomson RD (1987) Localization of sequences in wheat endosperm protein genes which confer tissue-specific expression in tobacco. EMBO J 6:3559–3564PubMedPubMedCentralGoogle Scholar
  7. Corona-Carrillo JI, Flores-Ponce M, Chávez-Nájera G, Díaz-Pontones DM (2014) Peroxidase activity in scutella of maize in association with anatomical changes during germination and grain storage. Springer Plus 3:399CrossRefPubMedPubMedCentralGoogle Scholar
  8. Decourcelle M, Perez-Fons L, Baulande S, Steiger S, Couvelard L, Hem S, Zhu C, Capell T, Christou P, Fraser P, Sandmann G (2015) Combined transcript, proteome, and metabolite analysis of transgenic maize seeds engineered for enhanced carotenoid synthesis reveals pleotropic effects in core metabolism. J Exp Bot 66:3141–3150CrossRefPubMedPubMedCentralGoogle Scholar
  9. Eisenreich W, Rojdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6:78–84CrossRefPubMedGoogle Scholar
  10. Enfissi EM, Barneche F, Ahmed I, Lichtlé C, Gerrish C, McQuinn RP, Giovannoni JJ, Lopez-Juez E, Bowler C, Bramley PM, Fraser PD (2010) Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED1 downregulated tomato fruit. Plant Cell 22:1190–1215CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gassel S, Breitenbach J, Sandmann G (2014) Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant. Appl Microbiol Biotechnol 98:345–350CrossRefPubMedGoogle Scholar
  12. Goodwin TW (1980) The biochemistry of the carotenoids: volume I plants. Chapman and Hall, LondonCrossRefGoogle Scholar
  13. Hartings H, Fracassetti M, Motto M (2012) Access genetic enhancement of grain quality- related traits in maize. In: Çiftçi Y (ed) Transgenic plants—advances and limitations. InTech Publisher, Rijeka, pp 191–218Google Scholar
  14. Hasunuma T, Miyazawa SI, Yoshimura S, Shinzaki Y, Tomizawa KI, Shindo K, Choi SK, Misawa N, Miyake C (2008) Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J 55:857–868CrossRefPubMedGoogle Scholar
  15. Huang JC, Zhong YJ, Liu J, Sandmann G, Chen F (2013) Metabolic engineering of tomato for high-yield production of astaxanthin. Metab Eng 17:59–67CrossRefPubMedGoogle Scholar
  16. Kim WT, Okita TW (1988) Structure, expression, and heterogeneity of the rice seed prolamines. Plant Physiol 88:649–655CrossRefPubMedPubMedCentralGoogle Scholar
  17. Krinsky NI (1989) Antioxidant functions of carotenoids. Free Radic Biol Med 7:617–635CrossRefPubMedGoogle Scholar
  18. Nishida Y, Adachi K, Kasai H, Shizuri Y, Shindo K, Sawabe A, Komemushi S, Miki W, Misawa N (2005) Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2′-beta-hydroxylase, from Brevundimonas sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls. Appl Environ Microbiol 71:4286–4296CrossRefPubMedPubMedCentralGoogle Scholar
  19. Nogareda C, Moreno JA, Angulo E, Sandmann G, Portero M, Capell T, Zhu C, Christou P (2015) Carotenoid-enriched transgenic corn delivers bioavailable carotenoids to poultry and protects them against coccidiosis. Plant Biotechnol J [Epub ahead of print] PubMedGoogle Scholar
  20. Perez-Fons L, Bramley PM, Fraser PD (2014) The optimisation and application of a metabolite profiling procedure for the metabolic phenotyping of Bacillus species. Metabolomics 10:77–90CrossRefGoogle Scholar
  21. Sandmann G (2001) Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. Trends Plant Sci 6:14–17CrossRefPubMedGoogle Scholar
  22. Sandmann G (2015) Carotenoids of biotechnological importance. In: Schrader J, Bohlmann J (eds) Biotechnology of isoprenoids. Springer, Berlin, Heidelberg, pp 449–467Google Scholar
  23. Sandmann G, Römer S, Fraser PD (2006) Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metab Eng 8:291–302CrossRefPubMedGoogle Scholar
  24. Schreier PH, Seftor EA, Schell J, Bohnert HJ (1985) The use of nuclear-encoded sequences to direct the light-regulated synthesis and transport of a foreign protein into plant chloroplasts. EMBO J 4:25–32PubMedPubMedCentralGoogle Scholar
  25. Sørensen MB, Müller M, Skerritt J, Simpson D (1996) Hordein promoter methylation and transcriptional activity in wild-type and mutant barley endosperm. Mol Genet Genom 250:750–760CrossRefGoogle Scholar
  26. Spielbauer G, Margl L, Hannah LC, Römisch W, Ettenhuber C, Bacher A, Gierl A, Eisenreich W, Genschel U (2006) Robustness of central carbohydrate metabolism in developing maize kernels. Phytochem 67:1460–1475CrossRefGoogle Scholar
  27. Sugio T, Satoh J, Matsuura H, Shinmyo A, Kato K (2008) The 5′-untranslated region of the Oryza sativa alcohol dehydrogenase gene functions as a translational enhancer in monocotyledonous plant cells. J Biosci Bioeng 105:300–302CrossRefPubMedGoogle Scholar
  28. Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2513–2518PubMedPubMedCentralGoogle Scholar
  29. Tyczkowski JK, Hamilton PB (1986) Absorption, transport, and deposition in chickens of lutein diester, a carotenoid extracted from Marigold (Tagetes erecta) petals. Poult Sci 65:1526–1531CrossRefPubMedGoogle Scholar
  30. Valot B, Langella O, Nano E, Zivy M (2011) Mass ChroQ: a versatile tool for mass spectrometry quantification. Proteomics 11:3572–3577CrossRefPubMedGoogle Scholar
  31. Vershinin A (1999) Biological functions of carotenoids—diversity and evolution. Biofactors 10:99–104CrossRefPubMedGoogle Scholar
  32. Yamagata T, Kato H, Kuroda S, Abe S, Davies E (2003) Uncleaved legumin in developing maize endosperm: identification, accumulation and putative subcellular localization. J Exp Bot 54:913–922CrossRefPubMedGoogle Scholar
  33. Zhong YJ, Huang JC, Liu J, Li Y, Jiang Y, Xu ZF, Sandmann G, Chen F (2011) Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. J Exp Bot 62:3659–3669CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA 105:18232–18237CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gemma Farré
    • 1
  • Laura Perez-Fons
    • 2
  • Mathilde Decourcelle
    • 3
    • 4
  • Jürgen Breitenbach
    • 5
  • Sonia Hem
    • 3
  • Changfu Zhu
    • 1
  • Teresa Capell
    • 1
  • Paul Christou
    • 1
    • 6
  • Paul D. Fraser
    • 2
  • Gerhard Sandmann
    • 5
    Email author
  1. 1.Department of Plant Production and Forestry ScienceUniversity of Lleida-Agrotecnio CenterLleidaSpain
  2. 2.School of Biological Sciences, Royal HollowayUniversity of LondonEgham, SurreyUK
  3. 3.Unité de Biochimie et Physiologie Moléculaire des PlantesINRA MontpellierMontpellierFrance
  4. 4.Institut de Génétique et de Biologie Moléculaire et CellulairemIllkirchFrance
  5. 5.Biosynthesis Group, Institute of Molecular BiosciencesGoethe University Frankfurt/MFrankfurtGermany
  6. 6.Catalan Institute for Research and Advanced Studies (ICREA)BarcelonaSpain

Personalised recommendations