Advertisement

Transgenic Research

, Volume 25, Issue 3, pp 361–374 | Cite as

The production of multi-transgenic pigs: update and perspectives for xenotransplantation

  • Heiner NiemannEmail author
  • Bjoern PetersenEmail author
TARC X

Abstract

The domestic pig shares many genetic, anatomical and physiological similarities to humans and is thus considered to be a suitable organ donor for xenotransplantation. However, prior to clinical application of porcine xenografts, three major hurdles have to be overcome: (1) various immunological rejection responses, (2) physiological incompatibilities between the porcine organ and the human recipient and (3) the risk of transmitting zoonotic pathogens from pig to humans. With the introduction of genetically engineered pigs expressing high levels of human complement regulatory proteins or lacking expression of α-Gal epitopes, the HAR can be consistently overcome. However, none of the transgenic porcine organs available to date was fully protected against the binding of anti-non-Gal xenoreactive natural antibodies. The present view is that long-term survival of xenografts after transplantation into primates requires additional modifications of the porcine genome and a specifically tailored immunosuppression regimen compliant with current clinical standards. This requires the production and characterization of multi-transgenic pigs to control HAR, AVR and DXR. The recent emergence of new sophisticated molecular tools such as Zinc-Finger nucleases, Transcription-activator like endonucleases, and the CRISPR/Cas9 system has significantly increased efficiency and precision of the production of genetically modified pigs for xenotransplantation. Several candidate genes, incl. hTM, hHO-1, hA20, CTLA4Ig, have been explored in their ability to improve long-term survival of porcine xenografts after transplantation into non-human primates. This review provides an update on the current status in the production of multi-transgenic pigs for xenotransplantation which could bring porcine xenografts closer to clinical application.

Keywords

Human organ shortage Somatic cell nuclear transfer DNA nucleases Long term survival of porcine xenografts Hemeoxygenase-1 gene Anti-coagulant strategy 

Notes

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) TRR 127 and the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence “REBIRTH”.

References

  1. Ahrens HE, Petersen B, Herrmann D, Lucas-Hahn A, Hassel P, Ziegler M et al (2015a) siRNA mediated knockdown of tissue factor expression in pigs for xenotransplantation. Am J Transplant 15:1407–1414CrossRefPubMedGoogle Scholar
  2. Ahrens HE, Petersen B, Ramackers W, Petkov S, Herrmann D, Hauschild-Quintern J et al (2015b) Kidneys from α1,3-galactosyltransferase knockout/human heme oxygenase-1/human A20 transgenic pigs are protected from rejection during ex vivo perfusion with human blood. Transplant Direct 1:1–8CrossRefGoogle Scholar
  3. Bach FH, Ferran C, Hechenleitner P, Mark W, Koyamada N, Miyatake T et al (1997) Accommodation of vascularized xenografts: expression of “protective genes” by donor endothelial cells in a host Th2 cytokine environment. Nat Med 3:196–204CrossRefPubMedGoogle Scholar
  4. Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F et al (1992) Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem 267:18148–18153PubMedGoogle Scholar
  5. Banz Y, Cung T, Korchagina EY, Bovin NV, Haeberli A, Rieben R (2005) Endothelial cell protection and complement inhibition in xenotransplantation: a novel in vitro model using whole blood. Xenotransplantation 12:434–443CrossRefPubMedGoogle Scholar
  6. Brune B, Ullrich V (1987) Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol 32:497–504PubMedGoogle Scholar
  7. Byrne GW, Stalboerger PG, Davila E, Heppelmann CJ, Gazi MH, McGregor HC et al (2008) Proteomic identification of non-Gal antibody targets after pig-to-primate cardiac xenotransplantation. Xenotransplantation 15:268–276CrossRefPubMedPubMedCentralGoogle Scholar
  8. Byrne GW, Stalboerger PG, Du Z, Davis TR, McGregor CG (2011) Identification of new carbohydrate and membrane protein antigens in cardiac xenotransplantation. Transplantation 91:287–292CrossRefPubMedGoogle Scholar
  9. Byrne GW, Du Z, Stalboerger P, Kogelberg H, McGregor CG (2014) Cloning and expression of porcine beta1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen. Xenotransplantation 21:543–554CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109:17382–17387CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chou H, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL et al (1998) A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci USA 95:11751–11756CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cooper DK, Satyananda V, Ekser B, van der Windt DJ, Hara H, Ezzelarab MB et al (2014) Progress in pig-to-non-human primate transplantation models (1998–2013): a comprehensive review of the literature. Xenotransplantation 21:397–419CrossRefPubMedPubMedCentralGoogle Scholar
  14. Crikis S, Cowan PJ, d’Apice AJ (2006) Intravascular thrombosis in discordant xenotransplantation. Transplantation 82:1119–1123CrossRefPubMedGoogle Scholar
  15. Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S et al (2002) Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20:251–255CrossRefPubMedGoogle Scholar
  16. d’Apice AJ, Cowan PJ (2008) Xenotransplantation: the next generation of engineered animals. Transpl Immunol 21:111–115CrossRefPubMedPubMedCentralGoogle Scholar
  17. Davila E, Byrne GW, LaBreche PT, McGregor HC, Schwab AK, Davies WR et al (2006) T-cell responses during pig-to-primate xenotransplantation. Xenotransplantation 13:31–40CrossRefPubMedGoogle Scholar
  18. Esquivel EL, Maeda A, Eguchi H, Asada M, Sugiyama M, Manabe C et al (2015) Suppression of human macrophage-mediated cytotoxicity by transgenic swine endothelial cell expression of HLA-G. Transpl Immunol 32:109–115CrossRefPubMedGoogle Scholar
  19. Estrada JL, Martens G, Li P, Adams A, Newell KA, Ford ML et al (2015) Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation 22:194–202CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fujimura T, Kurome M, Murakami H, Takahagi Y, Matsunami K, Shimanuki S et al (2004) Cloning of the transgenic pigs expressing human decay accelerating factor and N-acetylglucosaminyltransferase III. Cloning Stem Cells 6:294–301CrossRefPubMedGoogle Scholar
  22. Galili U (1993) Interaction of the natural anti-Gal antibody with alpha-galactosyl epitopes: a major obstacle for xenotransplantation in humans. Immunol Today 14:480–482CrossRefPubMedGoogle Scholar
  23. Garrels W, Mates L, Holler S, Dalda A, Taylor U, Petersen B et al (2011) Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome. PLoS ONE 6:e23573CrossRefPubMedPubMedCentralGoogle Scholar
  24. Goto M, Groth CG, Nilsson B, Korsgren O (2004) Intraportal pig islet xenotransplantation into athymic mice as an in vivo model for the study of the instant blood-mediated inflammatory reaction. Xenotransplantation 11:195–202CrossRefPubMedGoogle Scholar
  25. Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32:577–582CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24:372–375CrossRefPubMedPubMedCentralGoogle Scholar
  27. Harris DG, Quinn KJ, French BM, Schwartz E, Kang E, Dahi S et al (2015) Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood. Xenotransplantation 22:102–111CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A et al (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci USA 108:12013–12017CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hauschild-Quintern J, Petersen B, Queisser AL, Lucas-Hahn A, Schwinzer R, Niemann H (2013a) Gender non-specific efficacy of ZFN mediated gene targeting in pigs. Transgenic Res 22:1–3CrossRefPubMedGoogle Scholar
  30. Hauschild-Quintern J, Petersen B, Cost GJ, Niemann H (2013b) Gene knockout and knockin by zinc-finger nucleases: current status and perspectives. Cell Mol Life Sci 70:2969–2983CrossRefPubMedGoogle Scholar
  31. Horvath-Arcidiacono JA, Porter CM, Bloom ET (2006) Human NK cells can lyse porcine endothelial cells independent of their expression of Galalpha(1,3)-Gal and killing is enhanced by activation of either effector or target cells. Xenotransplantation 13:318–327CrossRefPubMedGoogle Scholar
  32. Ide K, Ohdan H, Kobayashi T, Hara H, Ishiyama K, Asahara T (2005) Antibody- and complement-independent phagocytotic and cytolytic activities of human macrophages toward porcine cells. Xenotransplantation 12:181–188CrossRefPubMedGoogle Scholar
  33. Inverardi L, Clissi B, Stolzer AL, Bender JR, Sandrin MS, Pardi R (1997) Human natural killer lymphocytes directly recognize evolutionarily conserved oligosaccharide ligands expressed by xenogeneic tissues. Transplantation 63:1318–1330CrossRefPubMedGoogle Scholar
  34. Iwase H, Ezzelarab MB, Ekser B, Cooper DK (2014) The role of platelets in coagulation dysfunction in xenotransplantation, and therapeutic options. Xenotransplantation 21:201–220CrossRefPubMedGoogle Scholar
  35. Izsvak Z, Chuah MK, Vandendriessche T, Ivics Z (2009) Efficient stable gene transfer into human cells by the Sleeping Beauty transposon vectors. Methods 49:287–297CrossRefPubMedGoogle Scholar
  36. Jaattela M, Mouritzen H, Elling F, Bastholm L (1996) A20 zinc finger protein inhibits TNF and IL-1 signaling. J Immunol 156:1166–1173PubMedGoogle Scholar
  37. Kim D, Bae S, Park J, Kim E, Kim S, Yu HR et al (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12:237–243CrossRefPubMedGoogle Scholar
  38. Klymiuk N, van Buerck L, Bahr A, Offers M, Kessler B, Wuensch A et al (2012) Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes 61:1527–1532CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kuwaki K, Tseng YL, Dor FJ, Shimizu A, Houser SL, Sanderson TM et al (2005) Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med 11:29–31CrossRefPubMedGoogle Scholar
  40. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS et al (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089–1092CrossRefPubMedGoogle Scholar
  41. LaMattina JC, Burdorf L, Zhang T, Rybak E, Cheng X, Munivenkatappa R et al (2014) Pig-to-baboon liver xenoperfusion utilizing GalTKO.hCD46 pigs and glycoprotein Ib blockade. Xenotransplantation 21:274–286CrossRefPubMedPubMedCentralGoogle Scholar
  42. Larsen CP, Pearson TC, Adams AB, Tso P, Shirasugi N, Strobert E et al (2005) Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant 5:443–453CrossRefPubMedGoogle Scholar
  43. Lee KF, Salvaris EJ, Roussel JC, Robson SC, d’Apice AJ, Cowan PJ (2008) Recombinant pig TFPI efficiently regulates human tissue factor pathways. Xenotransplantation 15:191–197CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lee KG, Lee H, Ha JM, Lee YK, Kang HJ, Park CG et al (2012) Increased human tumor necrosis factor-alpha levels induce procoagulant change in porcine endothelial cells in vitro. Xenotransplantation 19:186–195CrossRefPubMedGoogle Scholar
  45. Li P, Estrada JL, Burlak C, Montgomery J, Butler JR, Santos RM et al (2015) Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation 22:20–31CrossRefPubMedGoogle Scholar
  46. Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C, Blain C et al (2013) Live pigs produced from genome edited zygotes. Sci Rep 3:2847CrossRefPubMedGoogle Scholar
  47. Lin CC, Chen D, McVey JH, Cooper DK, Dorling A (2008) Expression of tissue factor and initiation of clotting by human platelets and monocytes after incubation with porcine endothelial cells. Transplantation 86:702–709CrossRefPubMedPubMedCentralGoogle Scholar
  48. Loveland BE, Milland J, Kyriakou P, Thorley BR, Christiansen D, Lanteri MB et al (2004) Characterization of a CD46 transgenic pig and protection of transgenic kidneys against hyperacute rejection in non-immunosuppressed baboons. Xenotransplantation 11:171–183CrossRefPubMedGoogle Scholar
  49. Luther T, Flossel C, Mackman N, Bierhaus A, Kasper M, Albrecht S et al (1996) Tissue factor expression during human and mouse development. Am J Pathol 149:101–113PubMedPubMedCentralGoogle Scholar
  50. Lutz J, le Luong A, Strobl M, Deng M, Huang H, Anton M et al (2008) The A20 gene protects kidneys from ischaemia/reperfusion injury by suppressing pro-inflammatory activation. J Mol Med (Berl) 86:1329–1339CrossRefGoogle Scholar
  51. Ma X, Ye B, Gao F, Liang Q, Dong Q, Liu Y et al (2012) Tissue factor knockdown in porcine islets: an effective approach to suppressing the instant blood-mediated inflammatory reaction. Cell Transplant 21:61–71CrossRefPubMedGoogle Scholar
  52. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148CrossRefPubMedGoogle Scholar
  53. Miwa Y, Kobayashi T, Nagasaka T, Liu D, Yu M, Yokoyama I et al (2004) Are N-glycolylneuraminic acid (Hanganutziu–Deicher) antigens important in pig-to-human xenotransplantation? Xenotransplantation 11:247–253CrossRefPubMedGoogle Scholar
  54. Mueller BM, Reisfeld RA, Edgington TS, Ruf W (1992) Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proc Natl Acad Sci USA 89:11832–11836CrossRefPubMedPubMedCentralGoogle Scholar
  55. Niemann H, Verhoeyen E, Wonigeit K, Lorenz R, Hecker J, Schwinzer R et al (2001) Cytomegalovirus early promoter induced expression of hCD59 in porcine organs provides protection against hyperacute rejection. Transplantation 72:1898–1906CrossRefPubMedGoogle Scholar
  56. Oropeza M, Petersen B, Carnwath JW, Lucas-Hahn A, Lemme E, Hassel P et al (2009) Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation 16:522–534CrossRefPubMedGoogle Scholar
  57. Osterud B, Rapaport SI (1977) Activation of factor IX by the reaction product of tissue factor and factor VII: additional pathway for initiating blood coagulation. Proc Natl Acad Sci USA 74:5260–5264CrossRefPubMedPubMedCentralGoogle Scholar
  58. Padler-Karavani V, Yu H, Cao H, Chokhawala H, Karp F, Varki N et al (2008) Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 18:818–830CrossRefPubMedPubMedCentralGoogle Scholar
  59. Parry GC, Erlich JH, Carmeliet P, Luther T, Mackman N (1998) Low levels of tissue factor are compatible with development and hemostasis in mice. J Clin Invest 101:560–569CrossRefPubMedPubMedCentralGoogle Scholar
  60. Petersen B, Niemann H (2015) Molecular scissors and their application in genetically modified farm animals. Transgenic Res 24:381–396CrossRefPubMedGoogle Scholar
  61. Petersen B, Carnwath JW, Niemann H (2009a) The perspectives for porcine-to-human xenografts. Comp Immunol Microbiol Infect Dis 32:91–105CrossRefPubMedGoogle Scholar
  62. Petersen B, Ramackers W, Tiede A, Lucas-Hahn A, Herrmann D, Barg-Kues B et al (2009b) Pigs transgenic for human thrombomodulin have elevated production of activated protein C. Xenotransplantation 16:486–495CrossRefPubMedGoogle Scholar
  63. Petersen B, Ramackers W, Lucas-Hahn A, Lemme E, Hassel P, Queisser AL et al (2011) Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys. Xenotransplantation 18:355–368CrossRefPubMedGoogle Scholar
  64. Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH et al (2003) Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299:411–414CrossRefPubMedPubMedCentralGoogle Scholar
  65. Reyes LM, Estrada JL, Wang ZY, Blosser RJ, Smith RF, Sidner RA et al (2014) Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol 193:5751–5757CrossRefPubMedGoogle Scholar
  66. Rieben R, Seebach JD (2005) Xenograft rejection: IgG1, complement and NK cells team up to activate and destroy the endothelium. Trends Immunol 26:2–5CrossRefPubMedGoogle Scholar
  67. Roussel JC, Moran CJ, Salvaris EJ, Nandurkar HH, d’Apice AJ, Cowan PJ (2008) Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am J Transplant 8:1101–1112CrossRefPubMedGoogle Scholar
  68. Ryter SW, Choi AM (2013) Carbon monoxide: present and future indications for a medical gas. Korean J Intern Med 28:123–140CrossRefPubMedPubMedCentralGoogle Scholar
  69. Salama A, Evanno G, Harb J, Soulillou JP (2015) Potential deleterious role of anti-Neu5Gc antibodies in xenotransplantation. Xenotransplantation 22:85–94CrossRefPubMedGoogle Scholar
  70. Scobie L, Padler-Karavani V, Le Bas-Bernardet S, Crossan C, Blaha J, Matouskova M et al (2013) Long-term IgG response to porcine Neu5Gc antigens without transmission of PERV in burn patients treated with porcine skin xenografts. J Immunol 191:2907–2915CrossRefPubMedPubMedCentralGoogle Scholar
  71. Song HY, Rothe M, Goeddel DV (1996) The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc Natl Acad Sci USA 93:6721–6725CrossRefPubMedPubMedCentralGoogle Scholar
  72. Taylor FB Jr, Chang A, Ruf W, Morrissey JH, Hinshaw L, Catlett R et al (1991) Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock 33:127–134PubMedGoogle Scholar
  73. Tenhunen R, Ross ME, Marver HS, Schmid R (1970) Reduced nicotinamide-adenine dinucleotide phosphate dependent biliverdin reductase: partial purification and characterization. Biochemistry 9:298–303CrossRefPubMedGoogle Scholar
  74. Mohiuddin MM, Singh AK, Corcoran PC, Hoyt RF, Thomas, ML, III, Ayares D, et al. (2014) Genetically engineered pigs and target-specific immunomodulation provide significant graft survival and hope for clinical cardiac xenotransplantation. J Thorac Cardiovasc Surg 148:1106–1113 (discussion 1113–1114) Google Scholar
  75. Toomey JR, Kratzer KE, Lasky NM, Stanton JJ, Broze GJ Jr (1996) Targeted disruption of the murine tissue factor gene results in embryonic lethality. Blood 88:1583–1587PubMedGoogle Scholar
  76. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D et al (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32:569–576CrossRefPubMedPubMedCentralGoogle Scholar
  77. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651CrossRefPubMedGoogle Scholar
  78. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646CrossRefPubMedGoogle Scholar
  79. Weiss EH, Lilienfeld BG, Muller S, Muller E, Herbach N, Kessler B et al (2009) HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation 87:35–43CrossRefPubMedGoogle Scholar
  80. Wheeler DG, Joseph ME, Mahamud SD, Aurand WL, Mohler PJ, Pompili VJ et al (2012) Transgenic swine: expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol 52:958–961CrossRefPubMedPubMedCentralGoogle Scholar
  81. Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL et al (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91:78CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wuensch A, Baehr A, Bongoni AK, Kemter E, Blutke A, Baars W et al (2014) Regulatory sequences of the porcine THBD gene facilitate endothelial-specific expression of bioactive human thrombomodulin in single- and multitransgenic pigs. Transplantation 97:138–147CrossRefPubMedGoogle Scholar
  83. Xin J, Yang H, Fan N, Zhao B, Ouyang Z, Liu Z et al (2013) Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS ONE 8:e84250CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yamada K, Yazawa K, Shimizu A, Iwanaga T, Hisashi Y, Nuhn M et al (2005) Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med 11:32–34CrossRefPubMedGoogle Scholar
  85. Yang YG, Sykes M (2007) Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol 7:519–531CrossRefPubMedGoogle Scholar
  86. Yet SF, Tian R, Layne MD, Wang ZY, Maemura K, Solovyeva M et al (2001) Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ Res 89:168–173CrossRefPubMedGoogle Scholar
  87. Zayed H, Izsvak Z, Walisko O, Ivics Z (2004) Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol Ther 9:292–304CrossRefPubMedGoogle Scholar
  88. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771CrossRefPubMedGoogle Scholar
  89. Zhou J, Shen B, Zhang W, Wang J, Yang J, Chen L et al (2014) One-step generation of different immunodeficient mice with multiple gene modifications by CRISPR/Cas9 mediated genome engineering. Int J Biochem Cell Biol 46:49–55CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Farm Animal GeneticsFriedrich-Loeffler-InstitutNeustadtGermany
  2. 2.REBIRTH, Cluster of ExcellenceHannover Medical SchoolHannoverGermany

Personalised recommendations