Transgenic Research

, Volume 25, Issue 3, pp 289–306 | Cite as

Pluripotent stem cells and livestock genetic engineering

  • Delia A. Soto
  • Pablo J. RossEmail author


The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs.


Gene editing Livestock Pluripotency Embryonic stem cells Transgenic animals 



We want to thank Mauricio Romero for help with figure design. Delia Soto is supported by a doctoral scholarship from CONICYT Becas Chile. Work in the Ross laboratory related to this manuscript is supported by NIH/NICHD RO1 HD070044 and USDA/NIFA Hatch Projects W-3171 and W-2112.


  1. Anokye-Danso F et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8:376–388PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ao Y, Mich-Basso JD, Lin B, Yang L (2014) High efficient differentiation of functional hepatocytes from porcine induced pluripotent stem cells. PloS one 9:e100417PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bao S et al (2009) Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461:1292–1295PubMedCrossRefGoogle Scholar
  4. Bao L et al (2011) Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res 21:600–608PubMedPubMedCentralCrossRefGoogle Scholar
  5. Beddington RS, Robertson EJ (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development (Cambridge, England) 105:733–737Google Scholar
  6. Blomberg LA, Telugu BP (2012) Twenty years of embryonic stem cell research in farm animals. Reprod Domest Anim 47(Suppl 4):80–85PubMedCrossRefGoogle Scholar
  7. Breton A et al (2013) Derivation and characterization of induced pluripotent stem cells from equine fibroblasts. Stem Cells Dev 22:611–621PubMedPubMedCentralCrossRefGoogle Scholar
  8. Buehr M et al (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298PubMedCrossRefGoogle Scholar
  9. Cao H et al (2012) Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins. Int J Biol Sci 8:498–511PubMedPubMedCentralCrossRefGoogle Scholar
  10. Carlson DF et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109:17382–17387PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chambers I, Smith A (2004) Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23:7150–7160PubMedCrossRefGoogle Scholar
  12. Chen Y et al (2015) Generation of cynomolgus monkey chimeric fetuses using embryonic stem cells. Cell Stem Cell 17:116–124PubMedCrossRefGoogle Scholar
  13. Cheng D et al (2012) Porcine induced pluripotent stem cells require LIF and maintain their developmental potential in early stage of embryos. PLoS One 7:e51778PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cherry SR, Biniszkiewicz D, van Parijs L, Baltimore D, Jaenisch R (2000) Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol Cell Biol 20:7419–7426PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chu Z et al (2015) PRMT5 enhances generation of induced pluripotent stem cells from dairy goat embryonic fibroblasts via down-regulation of p53. Cell Prolif 48:29–38PubMedCrossRefGoogle Scholar
  16. Cibelli JB et al (1998) Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat Biotechnol 16:642–646PubMedCrossRefGoogle Scholar
  17. Cook JT, McNiven MA, Richardson GF, Sutterlin AM (2000) Growth rate, body composition and feed digestibility/conversion of growth-enhanced transgenic Atlantic salmon (Salmo salar). Aquaculture 188:15–32CrossRefGoogle Scholar
  18. Di KQ et al (2015) Generation of fully pluripotent female murine-induced pluripotent stem cells. Biol Reprod 92:123PubMedCrossRefGoogle Scholar
  19. Eakin GS, Hadjantonakis AK (2006) Production of chimeras by aggregation of embryonic stem cells with diploid or tetraploid mouse embryos. Nat Protoc 1:1145–1153PubMedPubMedCentralCrossRefGoogle Scholar
  20. Eggan K et al (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 98:6209–6214PubMedPubMedCentralCrossRefGoogle Scholar
  21. Esteban MA et al (2009) Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284:17634–17640PubMedPubMedCentralCrossRefGoogle Scholar
  22. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedCrossRefGoogle Scholar
  23. Ezashi T et al (2009) Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci USA 106:10993–10998PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fan A et al (2013a) Effects of TET1 knockdown on gene expression and DNA methylation in porcine induced pluripotent stem cells. Reproduction (Cambridge, England) 146:569–579CrossRefGoogle Scholar
  25. Fan N et al (2013b) Piglets cloned from induced pluripotent stem cells. Cell Res 23:162–166PubMedPubMedCentralCrossRefGoogle Scholar
  26. Flisikowska T, Kind A, Schnieke A (2014) Genetically modified pigs to model human diseases. J Appl Genet 55:53–64PubMedCrossRefGoogle Scholar
  27. Forabosco F, Löhmus M, Rydhmer L, Sundström LF (2013) Genetically modified farm animals and fish in agriculture: a review. Livest Sci 153:1–9CrossRefGoogle Scholar
  28. Fujishiro SH et al (2013) Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells Dev 22:473–482PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gafni O et al (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature 504:282–286PubMedCrossRefGoogle Scholar
  31. Gandolfi F, Pennarossa G, Maffei S, Brevini T (2012) Why is it so difficult to derive pluripotent stem cells in domestic ungulates? Reprod Domest Anim 47(Suppl 5):11–17PubMedCrossRefGoogle Scholar
  32. Garcia EL, Mills AA (2002) Getting around lethality with inducible Cre-mediated excision. Semin Cell Dev Biol 13:151–158PubMedCrossRefGoogle Scholar
  33. German SD et al (2015) Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell Reprogram 17:19–27PubMedCrossRefGoogle Scholar
  34. Goncalves NN, Ambrosio CE, Piedrahita JA (2014) Stem cells and regenerative medicine in domestic and companion animals: a multispecies perspective. Reprod Domest Anim 49(Suppl 4):2–10PubMedCrossRefGoogle Scholar
  35. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gu M et al (2012) Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circ Res 111:882–893PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hall VJ et al (2012) Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells. Cell Reprogram 14:204–216PubMedGoogle Scholar
  38. Hammer RE et al (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683PubMedCrossRefGoogle Scholar
  39. Han X et al (2011) Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Res 21:1509–1512PubMedPubMedCentralCrossRefGoogle Scholar
  40. Harui A, Suzuki S, Kochanek S, Mitani K (1999) Frequency and stability of chromosomal integration of adenovirus vectors. J Virol 73:6141–6146PubMedPubMedCentralGoogle Scholar
  41. Hayashi K, de Sousa Lopes SM, Surani MA (2007) Germ cell specification in mice. Science (New York, NY) 316:394–396CrossRefGoogle Scholar
  42. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519–532PubMedCrossRefGoogle Scholar
  43. Hayashi K et al (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science (New York, NY) 338:971–975CrossRefGoogle Scholar
  44. Hotta A, Ellis J (2008) Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. J Cell Biochem 105:940–948PubMedCrossRefGoogle Scholar
  45. Hou P et al (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science (New York, NY) 341:651–654CrossRefGoogle Scholar
  46. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278PubMedPubMedCentralCrossRefGoogle Scholar
  47. Huang B et al (2011) A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS One 6:e24501PubMedPubMedCentralCrossRefGoogle Scholar
  48. Iwasaki S, Campbell KH, Galli C, Akiyama K (2000) Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biol Reprod 62:470–475PubMedCrossRefGoogle Scholar
  49. Jahner D et al (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298:623–628PubMedCrossRefGoogle Scholar
  50. Jia F et al (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kaji K et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775PubMedPubMedCentralCrossRefGoogle Scholar
  52. Khodadadi K et al (2012) Induction of pluripotency in adult equine fibroblasts without c-MYC. Stem Cells Int 2012:429160PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kobayashi T et al (2010) Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142:787–799PubMedCrossRefGoogle Scholar
  54. Koh S, Piedrahita JA (2014) From “ES-like” cells to induced pluripotent stem cells: a historical perspective in domestic animals. Theriogenology 81:103–111PubMedCrossRefGoogle Scholar
  55. Kou Z et al (2010) Mice cloned from induced pluripotent stem cells (iPSCs). Biol Reprod 83:238–243PubMedCrossRefGoogle Scholar
  56. Kues WA et al (2013) Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells. Stem Cells Dev 22:124–135PubMedCrossRefGoogle Scholar
  57. Kuijk EW, Chuva de Sousa Lopes SM, Geijsen N, Macklon N, Roelen BA (2011) The different shades of mammalian pluripotent stem cells. Hum Reprod Update 17:254–271PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kumar D, Talluri TR, Anand T, Kues WA (2015) Induced pluripotent stem cells: mechanisms, achievements and perspectives in farm animals. World J Stem Cells 7:315–328PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kwon DJ et al (2013) Generation of leukemia inhibitory factor-dependent induced pluripotent stem cells from the Massachusetts General Hospital miniature pig. BioMed Res Int 2013:140639PubMedPubMedCentralGoogle Scholar
  60. Lai L et al (2006) Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24:435–436PubMedPubMedCentralCrossRefGoogle Scholar
  61. Li P et al (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–1310PubMedPubMedCentralCrossRefGoogle Scholar
  62. Li W et al (2009) Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4:16–19PubMedCrossRefGoogle Scholar
  63. Li Y, Cang M, Lee AS, Zhang K, Liu D (2011) Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors. PLoS One 6:e15947PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lillico SG et al (2013) Live pigs produced from genome edited zygotes. Sci Rep 3:2847PubMedCrossRefGoogle Scholar
  65. Lim ML et al (2011) A novel, efficient method to derive bovine and mouse embryonic stem cells with in vivo differentiation potential by treatment with 5-azacytidine. Theriogenology 76:133–142PubMedCrossRefGoogle Scholar
  66. Liu J et al (2012a) Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology 77(338–346):e331Google Scholar
  67. Liu K et al (2012b) Generation of porcine-induced pluripotent stem cells by using OCT4 and KLF4 porcine factors. Cell Reprogram 14:505–513PubMedGoogle Scholar
  68. Ma K et al (2014) miRNAs promote generation of porcine-induced pluripotent stem cells. Mol Cell Biochem 389:209–218PubMedCrossRefGoogle Scholar
  69. Maga EA (2001) The use of recombinase proteins to generate transgenic large animals. Cloning Stem Cells 3:233–241PubMedCrossRefGoogle Scholar
  70. Maga EA, Cullor JS, Smith W, Anderson GB, Murray JD (2006) Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodborne Pathog Dis 3:384–392PubMedCrossRefGoogle Scholar
  71. Maherali N et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70PubMedCrossRefGoogle Scholar
  72. Malaver-Ortega LF, Sumer H, Liu J, Verma PJ (2012) The state of the art for pluripotent stem cells derivation in domestic ungulates. Theriogenology 78:1749–1762PubMedCrossRefGoogle Scholar
  73. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638PubMedPubMedCentralCrossRefGoogle Scholar
  74. Martínez R et al (1999) Mendelian transmission, transgene dosage and growth phenotype in transgenic tilapia (Oreochromis hornorum) showing ectopic expression of homologous growth hormone. Aquaculture 173:271–283CrossRefGoogle Scholar
  75. Montserrat N et al (2012) Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transpl 21:815–825CrossRefGoogle Scholar
  76. Muenthaisong S et al (2012) Generation of mouse induced pluripotent stem cells from different genetic backgrounds using Sleeping beauty transposon mediated gene transfer. Exp Cell Res 318:2482–2489PubMedCrossRefGoogle Scholar
  77. Nagy A et al (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development (Cambridge, England) 110:815–821Google Scholar
  78. Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90:8424–8428PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nagy K et al (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev 7:693–702PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492PubMedCrossRefGoogle Scholar
  81. Nichols J et al (2009) Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nat Med 15:814–818PubMedCrossRefGoogle Scholar
  82. Niemann H, Kues WA (2007) Transgenic farm animals: an update. Reprod Fertil Dev 19:762–770PubMedCrossRefGoogle Scholar
  83. Nienhuis AW, Dunbar CE, Sorrentino BP (2006) Genotoxicity of retroviral integration in hematopoietic cells. Molecular therapy. J Am Soc Gene Ther 13:1031–1049CrossRefGoogle Scholar
  84. Nishimura K et al (2011) Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286:4760–4771PubMedPubMedCentralCrossRefGoogle Scholar
  85. Nowak-Imialek M, Niemann H (2012) Pluripotent cells in farm animals: state of the art and future perspectives. Reprod Fertil Dev 25:103–128PubMedCrossRefGoogle Scholar
  86. Oback B (2008) Climbing mount efficiency—small steps, not giant leaps towards higher cloning success in farm animals. Reprod Domest Anim 43(Suppl 2):407–416PubMedCrossRefGoogle Scholar
  87. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedCrossRefGoogle Scholar
  88. Okita K et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412PubMedCrossRefGoogle Scholar
  89. Park KE, Telugu BP (2013) Role of stem cells in large animal genetic engineering in the TALENs-CRISPR era. Reprod Fertil Dev 26:65–73PubMedCrossRefGoogle Scholar
  90. Park KM, Cha SH, Ahn C, Woo HM (2013) Generation of porcine induced pluripotent stem cells and evaluation of their major histocompatibility complex protein expression in vitro. Vet Res Commun 37:293–301PubMedCrossRefGoogle Scholar
  91. Payer B, Lee JT, Namekawa SH (2011) X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Hum Genet 130:265–280PubMedPubMedCentralCrossRefGoogle Scholar
  92. Pera MF, Tam PP (2010) Extrinsic regulation of pluripotent stem cells. Nature 465:713–720PubMedCrossRefGoogle Scholar
  93. Petkov S, Hyttel P, Niemann H (2013) The choice of expression vector promoter is an important factor in the reprogramming of porcine fibroblasts into induced pluripotent cells. Cell Reprogram 15:1–8PubMedGoogle Scholar
  94. Polejaeva IA, Campbell KH (2000) New advances in somatic cell nuclear transfer: application in transgenesis. Theriogenology 53:117–126PubMedCrossRefGoogle Scholar
  95. Polejaeva I, Mitalipov S (2013) Stem cell potency and the ability to contribute to chimeric organisms. Reproduction (Cambridge, England) 145:R81–R88CrossRefGoogle Scholar
  96. Proudfoot C et al (2015) Genome edited sheep and cattle. Transgenic Res 24:147–153PubMedPubMedCentralCrossRefGoogle Scholar
  97. Pursel VG et al (1997) Transfer of an ovine metallothionein-ovine growth hormone fusion gene into swine. J Anim Sci 75:2208–2214PubMedGoogle Scholar
  98. Rahman MA, Mak R, Ayad H, Smith A, Maclean N (1998) Expression of a novel piscine growth hormone gene results in growth enhancement in transgenic tilapia (Oreochromis niloticus). Transgenic Res 7:357–369PubMedCrossRefGoogle Scholar
  99. Remy S et al (2014) Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases. Genome Res 24:1371–1383PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ren J et al (2011) Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming. Cell Res 21:849–853PubMedPubMedCentralCrossRefGoogle Scholar
  101. Richt JA et al (2007) Production of cattle lacking prion protein. Nat Biotechnol 25:132–138PubMedPubMedCentralCrossRefGoogle Scholar
  102. Rideout WM 3rd et al (2000) Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat Genet 24:109–110PubMedCrossRefGoogle Scholar
  103. Rodriguez A, Allegrucci C, Alberio R (2012) Modulation of pluripotency in the porcine embryo and iPS cells. PLoS One 7:e49079PubMedPubMedCentralCrossRefGoogle Scholar
  104. Rogers CS et al (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science (New York, NY) 321:1837–1841CrossRefGoogle Scholar
  105. Saeki K et al (2004) Functional expression of a Delta12 fatty acid desaturase gene from spinach in transgenic pigs. Proc Natl Acad Sci USA 101:6361–6366PubMedPubMedCentralCrossRefGoogle Scholar
  106. Saito S et al (2003) Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochem Biophys Res Commun 309:104–113PubMedCrossRefGoogle Scholar
  107. Sandmaier SE et al (2015) Generation of induced pluripotent stem cells from domestic goats. Mol Reprod Dev 82:709–721PubMedCrossRefGoogle Scholar
  108. Sartori C et al (2012) Ovine-induced pluripotent stem cells can contribute to chimeric lambs. Cell Reprogram 14:8–19PubMedGoogle Scholar
  109. Seki T, Fukuda K (2015) Methods of induced pluripotent stem cells for clinical application. World J Stem Cells 7:116–125PubMedPubMedCentralCrossRefGoogle Scholar
  110. Soldner F et al (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977PubMedPubMedCentralCrossRefGoogle Scholar
  111. Song H et al (2013) Induced pluripotent stem cells from goat fibroblasts. Mol Reprod Dev 80:1009–1017PubMedCrossRefGoogle Scholar
  112. Sridharan R et al (2009) Role of the murine reprogramming factors in the induction of pluripotency. Cell 136:364–377PubMedPubMedCentralCrossRefGoogle Scholar
  113. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K (2008a) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2:230–240PubMedPubMedCentralCrossRefGoogle Scholar
  114. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008b) Induced pluripotent stem cells generated without viral integration. Science (New York, NY) 322:945–949CrossRefGoogle Scholar
  115. Sumer H et al (2011) NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 89:2708–2716PubMedCrossRefGoogle Scholar
  116. Taft RA et al (2013) The perfect host: a mouse host embryo facilitating more efficient germ line transmission of genetically modified embryonic stem cells. PLoS One 8:e67826PubMedPubMedCentralCrossRefGoogle Scholar
  117. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  118. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  119. Takashima Y et al (2014) Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158:1254–1269PubMedPubMedCentralCrossRefGoogle Scholar
  120. Talluri TR et al (2014) Non-viral reprogramming of fibroblasts into induced pluripotent stem cells by Sleeping Beauty and piggyBac transposons. Biochem Biophys Res Commun 450:581–587PubMedCrossRefGoogle Scholar
  121. Talluri TR et al (2015) Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cell Reprogram 17:131–140PubMedPubMedCentralCrossRefGoogle Scholar
  122. Tam PP, Rossant J (2003) Mouse embryonic chimeras: tools for studying mammalian development. Development (Cambridge, England) 130:6155–6163CrossRefGoogle Scholar
  123. Tarkowski AK, Witkowska A, Opas J (1977) Development of cytochalasin in B-induced tetraploid and diploid/tetraploid mosaic mouse embryos. J Embryol Exp Morphol 41:47–64PubMedGoogle Scholar
  124. Telugu BP, Ezashi T, Roberts RM (2010a) Porcine induced pluripotent stem cells analogous to naive and primed embryonic stem cells of the mouse. Int J Dev Biol 54:1703–1711PubMedCrossRefGoogle Scholar
  125. Telugu BP, Ezashi T, Roberts RM (2010b) The promise of stem cell research in pigs and other ungulate species. Stem Cell Rev 6:31–41PubMedCrossRefGoogle Scholar
  126. Tesar PJ et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199PubMedCrossRefGoogle Scholar
  127. Theunissen TW et al (2014) Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15:471–487PubMedPubMedCentralCrossRefGoogle Scholar
  128. Thomson JA et al (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92:7844–7848PubMedPubMedCentralCrossRefGoogle Scholar
  129. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science (New York, NY) 282:1145–1147CrossRefGoogle Scholar
  130. Tokusumi T et al (2002) Recombinant Sendai viruses expressing different levels of a foreign reporter gene. Virus Res 86:33–38PubMedCrossRefGoogle Scholar
  131. Tonge PD et al (2014) Divergent reprogramming routes lead to alternative stem-cell states. Nature 516:192–197PubMedCrossRefGoogle Scholar
  132. van Berkel PH et al (2002) Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol 20:484–487PubMedCrossRefGoogle Scholar
  133. Vize PD et al (1988) Introduction of a porcine growth hormone fusion gene into transgenic pigs promotes growth. J Cell Sci 90(Pt 2):295–300PubMedGoogle Scholar
  134. Wakayama T, Rodriguez I, Perry AC, Yanagimachi R, Mombaerts P (1999) Mice cloned from embryonic stem cells. Proc Natl Acad Sci USA 96:14984–14989PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wall RJ et al (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23:445–451PubMedCrossRefGoogle Scholar
  136. Wang J et al (2013) Tbx3 and Nr5alpha2 play important roles in pig pluripotent stem cells. Stem Cell Rev 9:700–708PubMedCrossRefGoogle Scholar
  137. Warren L et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wei C et al (2015) Characterization of porcine partially reprogrammed iPSCs from adipose-derived stem cells. Reproduction (Cambridge, England) 149:485–496CrossRefGoogle Scholar
  139. Wernig M et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324PubMedCrossRefGoogle Scholar
  140. West FD et al (2010) Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev 19:1211–1220PubMedCrossRefGoogle Scholar
  141. West FD et al (2011) Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells (Dayton, Ohio) 29:1640–1643CrossRefGoogle Scholar
  142. Whitworth DJ, Ovchinnikov DA, Sun J, Fortuna PR, Wolvetang EJ (2014a) Generation and characterization of leukemia inhibitory factor-dependent equine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells Dev 23:1515–1523PubMedPubMedCentralCrossRefGoogle Scholar
  143. Whitworth KM et al (2014b) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91:78PubMedPubMedCentralCrossRefGoogle Scholar
  144. Woltjen K et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770PubMedPubMedCentralCrossRefGoogle Scholar
  145. Wu J, Belmonte JCI (2014) Stem cells: a designer’s guide to pluripotency. Nature 516:172–173PubMedCrossRefGoogle Scholar
  146. Wu Z et al (2009) Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1:46–54PubMedCrossRefGoogle Scholar
  147. Wu Y et al (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659–662PubMedCrossRefGoogle Scholar
  148. Wu J et al (2015) An alternative pluripotent state confers interspecies chimaeric competency. Nature 521:316–321PubMedCrossRefGoogle Scholar
  149. Wutz A, Jaenisch R (2000) A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 5:695–705PubMedCrossRefGoogle Scholar
  150. Xie B et al (2014) Positive correlation between the efficiency of induced pluripotent stem cells and the development rate of nuclear transfer embryos when the same porcine embryonic fibroblast lines are used as donor cells. Cell Reprogram 16:206–214PubMedPubMedCentralCrossRefGoogle Scholar
  151. Yang H et al (2013a) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379PubMedPubMedCentralCrossRefGoogle Scholar
  152. Yang JY, Mumaw JL, Liu Y, Stice SL, West FD (2013b) SSEA4-positive pig induced pluripotent stem cells are primed for differentiation into neural cells. Cell Transpl 22:945–959CrossRefGoogle Scholar
  153. Yeom YI et al (1996) Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development (Cambridge, England) 122:881–894Google Scholar
  154. Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292PubMedCrossRefGoogle Scholar
  155. Yu G et al (2009a) Generation of goats lacking prion protein. Mol Reprod Dev 76:3PubMedCrossRefGoogle Scholar
  156. Yu J et al (2009b) Human induced pluripotent stem cells free of vector and transgene sequences. Science (New York, NY) 324:797–801CrossRefGoogle Scholar
  157. Yusa K, Rad R, Takeda J, Bradley A (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6:363–369PubMedPubMedCentralCrossRefGoogle Scholar
  158. Zhang Y et al (2014) Efficient reprogramming of Naïve-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system. PLoS One 9:e85089PubMedPubMedCentralCrossRefGoogle Scholar
  159. Zhang W et al (2015) Pluripotent and metabolic features of two types of porcine iPSCs derived from defined mouse and human ES cell culture conditions. PLoS One 10:e0124562PubMedPubMedCentralCrossRefGoogle Scholar
  160. Zhou H et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384PubMedCrossRefGoogle Scholar
  161. Zhou S et al (2010) Successful generation of cloned mice using nuclear transfer from induced pluripotent stem cells. Cell Res 20:850–853PubMedCrossRefGoogle Scholar
  162. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875PubMedCrossRefGoogle Scholar
  163. Zufferey R et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Animal ScienceUniversity of California, DavisDavisUSA

Personalised recommendations