Skip to main content

The Arabidopsis NPR1 gene confers broad-spectrum disease resistance in strawberry

Abstract

Although strawberry is an economically important fruit crop worldwide, production of strawberry is limited by its susceptibility to a wide range of pathogens and the lack of major commercial cultivars with high levels of resistance to multiple pathogens. The objective of this study is to ectopically express the Arabidopsis thaliana NPR1 gene (AtNPR1) in the diploid strawberry Fragaria vesca L. and to test transgenic plants for disease resistance. AtNPR1 is a key positive regulator of the long-lasting broad-spectrum resistance known as systemic acquired resistance (SAR) and has been shown to confer resistance to a number of pathogens when overexpressed in Arabidopsis or ectopically expressed in several crop species. We show that ectopic expression of AtNPR1 in strawberry increases resistance to anthracnose, powdery mildew, and angular leaf spot, which are caused by different fungal or bacterial pathogens. The increased resistance is related to the relative expression levels of AtNPR1 in the transgenic plants. In contrast to Arabidopsis plants overexpressing AtNPR1, which grow normally and do not constitutively express defense genes, the strawberry transgenic plants are shorter than non-transformed controls, and most of them fail to produce runners and fruits. Consistently, most of the transgenic lines constitutively express the defense gene FvPR5, suggesting that the SAR activation mechanisms in strawberry and Arabidopsis are different. Nevertheless, our results indicate that overexpression of AtNPR1 holds the potential for generation of broad-spectrum disease resistance in strawberry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Barney DL, Davis BB, Fellman JK (1992) Strawberry production: overview. Alternative agricultural enterprises. http://www.cals.uidaho.edu/edcomm/pdf/CIS/CIS0931.pdf

  2. Brunings AM, Moyer C, Peres N, Folta KM (2010) Implementation of simple sequence repeat markers to genotype Florida strawberry varieties. Euphytica 173:63–75. doi:10.1007/s10681-009-0112-4

    CAS  Article  Google Scholar 

  3. Cao H, Bowling SA, Gordon SA, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592. doi:10.1105/tpc.6.11.1583

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA 95:6531–6536. doi:10.1073/pnas.95.11.6531

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116. doi:10.1007/BF02670468

    CAS  Article  Google Scholar 

  6. Chern MS, Fitzgerald HA, Yadav RC, Canlas PE, Dong X, Ronald PC (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J 27:101–113. doi:10.1046/j.1365-313x.2001.01070.x

    CAS  PubMed  Article  Google Scholar 

  7. Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005) Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact 18:511–520. doi:10.1094/MPMI-18-0511

    CAS  PubMed  Article  Google Scholar 

  8. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209. doi:10.1146/annurev.phyto.42.040803.140421

    CAS  PubMed  Article  Google Scholar 

  9. Epstein AH (1966) Angular leaf spot of strawberry. Plant Dis 50:167

    Google Scholar 

  10. Essghaier B, Fardeau ML, Cayol JL, Hajlaoui MR, Boudabous A, Jijakli H, Sadfi-Zouaoui N (2009) Biological control of grey mould in strawberry fruits by halophilic bacteria. J Appl Microbiol 106:833–846. doi:10.1111/j.1365-2672.2008.04053.x

    CAS  PubMed  Article  Google Scholar 

  11. Fan W, Dong X (2002) In vivo Interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389. doi:10.1105/tpc.001628

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. Feng W, Guan Z, Whidden A (2012) Strawberry industry overview and outlook. Food and Resource Economics Department—University of Florida. http://www.cals.uidaho.edu/edcomm/pdf/CIS/CIS0931.pdf. Accessed 08 Aug 2014

  13. Fitzgerald HA, Chern MS, Navarre R, Ronald PC (2004) Overexpression of (At)NPR1 in rice leads to a BTH- and environment-inducible lesion-mimic/cell death phenotype. Mol Plant Microbe Interact J 17:140–151

    CAS  Article  Google Scholar 

  14. Friedrich L, Lawton K, Dietrich R, Willits M, Cade R, Ryals J (2001) NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant Microbe Interact J 14:1114–1124. doi:10.1094/MPMI.2001.14.9.1114

    CAS  Article  Google Scholar 

  15. Göllner K, Schweizer P, Bai Y, Panstruga R (2008) Natural genetic resources of Arabidopsis thaliana reveal a high prevalence and unexpected phenotypic plasticity of RPW8-mediated powdery mildew resistance. New Phytol 177:725–742. doi:10.1111/j.1469-8137.2007.02339.x

    PubMed  Article  Google Scholar 

  16. Howard CM, Maas JL, Chandler CL, Albregts EE (1992) Anthracnose of strawberry caused by the Colletotrichum complex in Florida. Plant Dis 76:976–981

    Article  Google Scholar 

  17. Jordan VWL, Hunter T (1972) The effects of glass cloche and coloured polyethylene tunnels on microclimate, growth, yield and disease severity of strawberry plants. J Hortic Sci 47:419–426

    Google Scholar 

  18. Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    CAS  PubMed  Article  Google Scholar 

  19. Kennedy BW, King TH (1962) Angular leaf spot of strawberry caused by Xanthomonas fragariae sp. Phytopathology 52:873–875

    Google Scholar 

  20. Le Henanff G, Heitz T, Mestre P, Mutterer J, Walter B, Chong J (2009) Characterization of Vitis vinifera NPR1 homologs involved in the regulation of pathogenesis-related gene expression. BMC Plant Biol 9:54–67. doi:10.1186/1471-2229-9-54

    PubMed Central  PubMed  Article  Google Scholar 

  21. Le Henanff G, Kieffer-Mazet F, Miclot AS, Heitz T, Mestre P, Bertsch C, Chong J (2011) Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta 234:405–417. doi:10.1007/s00425-011-1412-1

    CAS  PubMed  Article  Google Scholar 

  22. Lin WC et al (2004) Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13:567–581. doi:10.1007/s11248-004-2375-9

    CAS  PubMed  Article  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT. Methods 25:402–408. doi:10.1006/meth.2001.1262

    CAS  PubMed  Article  Google Scholar 

  24. Maas JL, Gouin-Behe C, Hartung JS, Hokanson SC (2000) Sources of resistance for two differentially pathogenic strains of Xanthomonas fragariae in Fragaria genotypes. HortScience 35:4

    Google Scholar 

  25. Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microbe Interact J 19:123–129. doi:10.1094/MPMI-19-0123

    CAS  Article  Google Scholar 

  26. Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Over-expression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica. Mol Plant Microbe Interact J 20:1568–1580. doi:10.1094/MPMI-20-12-1568

    CAS  Article  Google Scholar 

  27. Meur G, Budatha M, Srinivasan T, Rajesh Kumar KR, Dutta Gupta A, Kirti PB (2008) Constitutive expression of Arabidopsis NPR1 confers enhanced resistance to the early instars of Spodoptera litura in transgenic tobacco. Physiol Plant 133:765–775. doi:10.1111/j.1399-3054.2008.01098.x

    CAS  PubMed  Article  Google Scholar 

  28. Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944. doi:10.1016/s0092-8674(03)00429-x

    CAS  PubMed  Article  Google Scholar 

  29. Oosumi T et al (2006) High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta 223:1219–1230. doi:10.1007/s00425-005-0170-3

    CAS  PubMed  Article  Google Scholar 

  30. Peres N (2011) 2011 Florida plant disease management guide: strawberry, March 2011. https://edis.ifas.ufl.edu/pdffiles/PG/PG05600.pdf. Accessed 08 Aug 2014

  31. Potlakayala SD, DeLong C, Sharpe A, Fobert PR (2007) Conservation of non-expressor of pathogenesis-related genes1 function between Arabidopsis thaliana and Brassica napus. Physiol Mol Plant Pathol 71:174–183. doi:10.1016/j.pmpp.2008.01.003

    CAS  Article  Google Scholar 

  32. Potter D et al (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43. doi:10.1007/s00606-007-0539-9

    Article  Google Scholar 

  33. Roberts PD, Jones JB, Chandler CK, Stall RE, Berger RD (1996) Survival of Xanthomonas fragariae on strawberry in summer nurseries in Florida detected by specific primers and nested polymerase chain reaction. Plant Dis 80:1283–1288

    CAS  Article  Google Scholar 

  34. Sehringer B, Zahradnik HP, Deppert WR, Simon M, Noethling C, Schaefer WR (2005) Evaluation of different strategies for real-time RT-PCR expression analysis of corticotropin-releasing hormone and related proteins in human gestational tissues. Anal Bioanal Chem 383:768–775. doi:10.1007/s00216-005-0067-9

    CAS  PubMed  Article  Google Scholar 

  35. Shaner G, Finney RE (1977) The effect of nitrogen fertilization on the expression os slow mildewing resistance in Knox wheat. Phytopathology 67:1051–1056. doi:10.1094/Phyto-67-1051

    CAS  Article  Google Scholar 

  36. Sreenivasaprasad S, Talhinhas P (2005) Genotypic and phenotypic diversity in Colletotrichum acutatum, a cosmopolitan pathogen causing anthracnose on a wide range of hosts. Mol Plant Pathol 6:361–378. doi:10.1111/j.1364-3703.2005.00291.x

    CAS  PubMed  Article  Google Scholar 

  37. Subramaniam R, Desveaux D, Spickler C, Michnick SW, Brisson N (2001) Direct visualization of protein interactions in plant cells. Nature 19:769–772. doi:10.1038/90831

    CAS  Google Scholar 

  38. Verberne MC, Brouwer N, Delbianco F, Linthorst HJ, Bol JF, Verpoorte R (2002) Method for the extraction of the volatile compound salicylic acid from tobacco leaf material. Phytochem Anal 13:45–50. doi:10.1002/pca.615

    CAS  PubMed  Article  Google Scholar 

  39. Wally O, Jayaraj J, Punja ZK (2009) Broad-spectrum disease resistance to necrotrophic and biotrophic pathogens in transgenic carrots (Daucus carota L.) expressing an Arabidopsis NPR1 gene. Planta 231:131–141. doi:10.1007/s00425-009-1031-2

    CAS  PubMed  Article  Google Scholar 

  40. Yuan Y et al (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J 5:313–324. doi:10.1111/j.1467-7652.2007.00243.x

    CAS  PubMed  Article  Google Scholar 

  41. Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. PNAS 96:6523–6528. doi:10.1073/pnas.96.11.6523

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  42. Zhang X, Francis MI, Dawson WO, Graham JH, Orbović V, Triplett EW, Mou Z (2010) Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker. Eur J Plant Pathol 128:91–100. doi:10.1007/s10658-010-9633-x

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by Florida Strawberry Research and Education Foundation. The authors are grateful to the doctoral fellowship from CAPES (Brazilian National Council for the Improvement of Higher Education—Grant Procs. BEX 5640/10-5). The authors also thank Dr. Sixue Chen (University of Florida) for access to the HPLC equipment.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhonglin Mou or Kevin M. Folta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 38 kb)

Supplementary material 2 (DOC 37 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silva, K.J.P., Brunings, A., Peres, N.A. et al. The Arabidopsis NPR1 gene confers broad-spectrum disease resistance in strawberry. Transgenic Res 24, 693–704 (2015). https://doi.org/10.1007/s11248-015-9869-5

Download citation

Keywords

  • Salicylic acid
  • AtNPR1
  • Systemic acquired resistance
  • Fragaria vesca L.
  • Disease resistance