Skip to main content

Advertisement

Log in

Field trial of GABA-fortified rice plants and oral administration of milled rice in spontaneously hypertensive rats

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Hypertension is one of the most critical risk factors accompanying cardiovascular diseases. γ-Aminobutyric acid (GABA) is a non-protein amino acid that functions as a major neurotransmitter in mammals and also as a blood-pressure lowering agent. We previously produced GABA-fortified rice lines of a popular Japonica rice cultivar ‘Koshihikari’ by genetic manipulation of GABA shunt-related genes. In the study reported here, we grew these same novel rice lines in a field trial and administered the milled rice orally to rats. The yield parameters of the transgenic rice plants were almost unchanged compared to those of untransformed cv. ‘Koshihikari’ plants, while the rice grains of the transgenic plants contained a high GABA content (3.5 g GABA/kg brown rice; 0.75–0.85 GABA g/kg milled rice) in a greenhouse trial. Oral administration of a diet containing 2.5 % GABA-fortified rice, with a daily intake for 8 weeks, had an approximately 20 mmHg anti-hypertensive effect in spontaneous hypertensive rats but not in normotensive Wistar-Kyoto rats. These results suggest that GABA-fortified rice may be applicable as a staple food to control or prevent hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abe Y, Umemura S, Sugimoto K, Hirawa N, Kato Y, Yokoyama N, Yokoyama T, Iwai J, Ishii M (1995) Effect of green tea rich in gamma-aminobutyric acid on blood pressure of Dahl salt-sensitive rats. Am J Hypertens 8:74–79

    Article  CAS  PubMed  Google Scholar 

  • Akama K, Takaiwa F (2007) C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. J Exp Bot 58:2699–2707

    Article  CAS  PubMed  Google Scholar 

  • Akama K, Akihiro T, Kitagawa M, Takaiwa F (2001) Rice (Oryza sativa) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus. Biochim Biophys Acta 1552:143–150

    Article  Google Scholar 

  • Akama K, Kanetou J, Shimosaki S, Kawakami K, Tsuchikura S, Takaiwa F (2009) Seed-specific expression of truncated OsGAD2 produces GABA-enriched rice grains that influence a decrease in blood pressure in spontaneously hypertensive rats. Transgenic Res 18:865–876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, Fromm H (1996) Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J 15:2988–2996

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bouché N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  PubMed  Google Scholar 

  • Clark SM, Di Leo R, Van Cauwenberghe OR, Mullen RT, Shelp BJ (2009) Subcellular localization and expression of multiple tomato gamma-aminobutyrate transaminases that utilize both pyruvate and glyoxylate. J Exp Bot 60:3255–3267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costa MA, Balaszczuk AM, Domínguez A, Catanzaro O, Arranz C (1998) Effects of L-NAME and L-Arg on arterial blood pressure in normotensive and hypertensive streptozotocin diabetic rats. Acta Physiol Pharmacol Ther Latinoam 48:59–63

    CAS  PubMed  Google Scholar 

  • Curtis DR, Johnston GA (1974) Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol 69:97–188

    CAS  PubMed  Google Scholar 

  • Fait A, Nesi AN, Angelovici R, Lehmann M, Pham PA, Song L, Haslam RP, Napier JA, Galili G, Fernie AR (2011) Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner. Plant Physiol 157:1026–1042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y (2004) Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br J Nutr 92:411–417

    Article  CAS  PubMed  Google Scholar 

  • Hayashi A, Kimoto K (2007) Nicotianamine preferentially inhibits angiotensin I-converting enzyme. J Nutr Sci Vitaminol 53:331–336

    Article  CAS  PubMed  Google Scholar 

  • Japan Food Research Laboratories Edit. (2007) Critical points in methods of analysis for the Japanese nutrition labeling. (In Japanese). Chuohoki Publishing, Tokyo

    Google Scholar 

  • Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J (2005) Global burden of hypertension: analysis of worldwide data. Lancet 365:217–223

    Article  PubMed  Google Scholar 

  • Kimura M, Hayakawa K, Sansawa H (2002) Involvement of gamma-aminobutyric acid (GABA) B receptors in the hypotensive effect of systemically administered GABA in spontaneously hypertensive rats. Jpn J Pharmacol 89:388–394

    Article  CAS  PubMed  Google Scholar 

  • Koike S, Matsukura C, Takayama M, Asamizu E, Ezura H (2013) Suppression of γ-aminobutyric acid (GABA) transaminases induces prominent GABA accumulation, dwarfism and infertility in the tomato (Solanum lycopersicum L.). Plant Cell Physiol 54:793–807

    Article  CAS  PubMed  Google Scholar 

  • Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:543

    PubMed Central  PubMed  Google Scholar 

  • Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Massot E, Banakar R, Gómez-Galera S, Zorrilla-López U, Sanahuja G, Arjó G, Miralpeix B, Vamvaka E, Farré G, Rivera SM, Dashevskaya S, Berman J, Sabalza M, Yuan D, Bai C, Bassie L, Twyman RM, Capell T, Christou P, Zhu C (2013) The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. Genes Nutr 8:29–41

    Article  PubMed Central  PubMed  Google Scholar 

  • Saikusa T, Horino T, Mori Y (1994) Distribution of free amino acids in the rice kernel and kernel fractions and effect of water soaking on the distribution. J Agric Food Chem 42:1122–1124

    Article  CAS  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4:446–452

    Article  PubMed  Google Scholar 

  • Shimajiri Y, Ozaki K, Kainou K, Akama K (2013a) Differential subcellular localization, enzymatic properties and expression patterns of γ-aminobutyric acid transaminases (GABA-Ts) in rice (Oryza sativa). J Plant Physiol 170:196–201

    Article  CAS  PubMed  Google Scholar 

  • Shimajiri Y, Oonishi T, Ozaki K, Kainou K, Akama K (2013b) Genetic manipulation of the γ-aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ-aminobutyric acid transaminase (GABA-T) lead to sustained and high levels of GABA accumulation in rice kernels. Plant Biotechnol J 11:594–604

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Tiba M, Iino M, Takayasu T (1955) The effect of gamma-aminobutyric acid on blood pressure. Jpn J Physiol 5:334–341

    Article  CAS  PubMed  Google Scholar 

  • Trobacher CP, Zarei A, Liu J, Clark SM, Bozzo GG, Shelp BJ (2013) Calmodulin-dependent and calmodulin-independent glutamate decarboxylases in apple fruit. BMC Plant Biol 13:144

    Article  PubMed Central  PubMed  Google Scholar 

  • Wakasa K, Hasegawa H, Nemoto H, Matsuda F, Miyazawa H, Tozawa Y, Morino K, Komatsu A, Yamada T, Terakawa T, Miyagawa H (2006) High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J Exp Bot 57:3069–3078

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa H, Hakata M (2010) Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol 51:795–809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang L, Tada Y, Yamamoto MP, Zhao H, Yoshikawa M, Takaiwa F (2006) A transgenic rice seed accumulating an anti-hypertensive peptide reduces the blood pressure of spontaneously hypertensive rats. FEBS Lett 580:3315–3320

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura M, Toyoshi T, Sano A, Izumi T, Fujii T, Konishi C, Inai S, Matsukura C, Fukuda N, Ezura H, Obata A (2010) Antihypertensive effect of a gamma-aminobutyric acid rich tomato cultivar ‘DG03-9’ in spontaneously hypertensive rats. J Agric Food Chem 58:615–619

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan [Genomics for Agricultural Innovation, Development of health promoting transgenic rice (GMC0005)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhito Akama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 12807 kb)

Supplementary material 2 (PPTX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowaka, E., Shimajiri, Y., Kawakami, K. et al. Field trial of GABA-fortified rice plants and oral administration of milled rice in spontaneously hypertensive rats. Transgenic Res 24, 561–569 (2015). https://doi.org/10.1007/s11248-014-9859-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-014-9859-z

Keywords