Transgenic Research

, Volume 24, Issue 2, pp 227–235 | Cite as

Efficient creation of an APOE knockout rabbit

  • Diana Ji
  • Guojun Zhao
  • Allison Songstad
  • Xiaoxia Cui
  • Edward J. WeinsteinEmail author
Original Paper


The rabbit is a preferred model system for diverse areas of human disease research, such as hypertension and atherosclerosis, for its close resemblance to human physiology. Its larger size than that of rodents allows for more convenient physiological and surgical manipulations as well as imaging. The rapid development of nuclease technologies enables the rabbit genome to be engineered as readily as that of rats and mice, offering rabbit models a chance to make their due impact on medical research. Here, we report the efficient creation of an APOE knockout rabbit by using zinc finger nucleases. The knockout rabbits had drastically elevated cholesterol and moderately increased triglyceride levels, mimicking symptoms in human heart disease. So far the rabbit genome has been successfully modified with three nuclease technologies. With a gestation period only days longer than those of rodents, we hope additional reports on their creation and characterization will help encourage the use of rabbit models where they are most relevant to human conditions.


Gene targeting Knockout rabbit Animal model APOE Zinc finger nuclease (ZFN) 



We would like to thank Eliezer Kopf and Fishel Alon for housing, breeding, and tissue sampling for genotyping and serum analysis, and Zsuzsanna Bosze for embryo microinjection service.


  1. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24(1):142–153. doi: 10.1101/gr.161638.113 CrossRefPubMedCentralPubMedGoogle Scholar
  2. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161(3):1169–1175PubMedCentralPubMedGoogle Scholar
  3. Bodo S, Gocza E, Revay T, Hiripi L, Carstea B, Kovacs A, Bodrogi L, Bosze Z (2004) Production of transgenic chimeric rabbits and transmission of the transgene through the germline. Mol Reprod Dev 68(4):435–440. doi: 10.1002/mrd.20109 CrossRefPubMedGoogle Scholar
  4. Brousseau ME, Hoeg JM (1999) Transgenic rabbits as models for atherosclerosis research. J Lipid Res 40(3):365–375PubMedGoogle Scholar
  5. Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, Cui X (2010) Targeted genome modification in mice using zinc-finger nucleases. Genetics 186(2):451–459. doi: 10.1534/genetics.110.117002 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Chang YF, Imam JS, Wilkinson MF (2007) The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76:51–74. doi: 10.1146/annurev.biochem.76.050106.093909 CrossRefPubMedGoogle Scholar
  7. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26(6):702–708. doi: 10.1038/nbt1409 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Duranthon V, Beaujean N, Brunner M, Odening KE, Santos AN, Kacskovics I, Hiripi L, Weinstein EJ, Bosze Z (2012) On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools. Transgenic Res 21(4):699–713. doi: 10.1007/s11248-012-9599-x CrossRefPubMedGoogle Scholar
  9. Fan J, Watanabe T (2003) Transgenic rabbits as therapeutic protein bioreactors and human disease models. Pharmacol Ther 99(3):261–282CrossRefPubMedGoogle Scholar
  10. Ferre N, Martinez-Clemente M, Lopez-Parra M, Gonzalez-Periz A, Horrillo R, Planaguma A, Camps J, Joven J, Tres A, Guardiola F, Bataller R, Arroyo V, Claria J (2009) Increased susceptibility to exacerbated liver injury in hypercholesterolemic APOE-deficient mice: potential involvement of oxysterols. Am J Physiol Gastrointest Liver Physiol 296(3):G553–G562. doi: 10.1152/ajpgi.00547.2007 CrossRefPubMedGoogle Scholar
  11. Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S, Niersbach H, Kind AJ, Gregory PD, Schnieke AE, Platzer J (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One 6(6):e21045. doi: 10.1371/journal.pone.0021045 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433. doi: 10.1126/science.1172447 CrossRefPubMedCentralPubMedGoogle Scholar
  13. Hauser PS, Narayanaswami V, Ryan RO (2011) Apolipoprotein E: from lipid transport to neurobiology. Prog Lipid Res 50(1):62–74. doi: 10.1016/j.plipres.2010.09.001 CrossRefPubMedCentralPubMedGoogle Scholar
  14. Holtzman DM, Herz J, Bu G (2012) Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2(3):a006312. doi: 10.1101/cshperspect.a006312 CrossRefPubMedCentralPubMedGoogle Scholar
  15. Huang ZH, Reardon CA, Subbaiah PV, Getz GS, Mazzone T (2013) APOE derived from adipose tissue does not suppress atherosclerosis or correct hyperlipidemia in APOE knockout mice. J Lipid Res 54(1):202–213. doi: 10.1194/jlr.M031906 CrossRefPubMedCentralPubMedGoogle Scholar
  16. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. doi: 10.1126/science.1225829 CrossRefPubMedGoogle Scholar
  17. Kanekiyo T, Xu H, Bu G (2014) APOE and Abeta in Alzheimer’s disease: accidental encounters or partners? Neuron 81(4):740–754. doi: 10.1016/j.neuron.2014.01.045 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93(3):1156–1160CrossRefPubMedCentralPubMedGoogle Scholar
  19. Lieber MR (1999) The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes Cells 4(2):77–85CrossRefPubMedGoogle Scholar
  20. Mashimo T, Takizawa A, Voigt B, Yoshimi K, Hiai H, Kuramoto T, Serikawa T (2010) Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One 5(1):e8870. doi: 10.1371/journal.pone.0008870 CrossRefPubMedCentralPubMedGoogle Scholar
  21. Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156(4):836–843. doi: 10.1016/j.cell.2014.01.027 CrossRefPubMedGoogle Scholar
  22. Pardo B, Gomez-Gonzalez B, Aguilera A (2009) DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol Life Sci CMLS 66(6):1039–1056. doi: 10.1007/s00018-009-8740-3 CrossRefGoogle Scholar
  23. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71(2):343–353CrossRefPubMedGoogle Scholar
  24. Pogwizd SM, Bers DM (2008) Rabbit models of heart disease. Drug Discov Today Dis Model 5(3):185–193. doi: 10.1016/j.ddmod.2009.02.001 CrossRefGoogle Scholar
  25. Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300(5620):763. doi: 10.1126/science.1078395 CrossRefPubMedGoogle Scholar
  26. Reardon CA, Driscoll DM, Davis RA, Borchardt RA, Getz GS (1986) The charge polymorphism of rat apoprotein E. J Biol Chem 261(10):4638–4645PubMedGoogle Scholar
  27. Ren X, Sun J, Housden BE, Hu Y, Roesel C, Lin S, Liu LP, Yang Z, Mao D, Sun L, Wu Q, Ji JY, Xi J, Mohr SE, Xu J, Perrimon N, Ni JQ (2013) Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci USA 110(47):19012–19017. doi: 10.1073/pnas.1318481110 CrossRefPubMedCentralPubMedGoogle Scholar
  28. Rohra D, Qazi Y (2008) Reliability of rodent models. In: Conn PM (ed) Sourcebook of models for biomedical research. Humana Press, pp 213–217. doi:  10.1007/978-1-59745-285-4_24
  29. Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA 105(15):5809–5814. doi: 10.1073/pnas.0800940105 CrossRefPubMedCentralPubMedGoogle Scholar
  30. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459(7245):437–441. doi: 10.1038/nature07992 CrossRefPubMedGoogle Scholar
  31. Smith J, Berg JM, Chandrasegaran S (1999) A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucleic Acids Res 27(2):674–681CrossRefPubMedCentralPubMedGoogle Scholar
  32. Song J, Zhong J, Guo X, Chen Y, Zou Q, Huang J, Li X, Zhang Q, Jiang Z, Tang C, Yang H, Liu T, Li P, Pei D, Lai L (2013) Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs. Cell Res 23(8):1059–1062. doi: 10.1038/cr.2013.85 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. doi: 10.1016/j.cell.2013.04.025 CrossRefPubMedCentralPubMedGoogle Scholar
  34. Yang D, Xu J, Zhu T, Fan J, Lai L, Zhang J, Chen YE (2014) Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J Mol Cell Biol 6(1):97–99. doi: 10.1093/jmcb/mjt047 CrossRefPubMedCentralPubMedGoogle Scholar
  35. Yanni AE (2004) The laboratory rabbit: an animal model of atherosclerosis research. Lab Anim 38(3):246–256. doi: 10.3201/eid0905.020321 CrossRefPubMedGoogle Scholar
  36. Zhang SHRR, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471CrossRefPubMedGoogle Scholar
  37. Zhao G, Liu Z, Ilagan MX, Kopan R (2010) Gamma-secretase composed of PS1/Pen2/Aph1a can cleave notch and amyloid precursor protein in the absence of nicastrin. J Neurosci 30(5):1648–1656. doi: 10.1523/JNEUROSCI.3826-09.2010 CrossRefPubMedCentralPubMedGoogle Scholar
  38. Zhao P, Zhang Z, Ke H, Yue Y, Xue D (2014) Oligonucleotide-based targeted gene editing in C. elegans via the CRISPR/Cas9 system. Cell Res 24(2):247–250. doi: 10.1038/cr.2014.9 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Diana Ji
    • 1
  • Guojun Zhao
    • 1
  • Allison Songstad
    • 1
  • Xiaoxia Cui
    • 1
  • Edward J. Weinstein
    • 1
    Email author
  1. 1.SAGE LabsSt. LouisUSA

Personalised recommendations