Skip to main content

Advertisement

Log in

Skeletal defects in Osterix-Cre transgenic mice

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Cre/loxP recombination is a powerful strategy widely used for in vivo conditional gene targeting. This technique has made possible many important discoveries of gene function in normal and disease biology. However, due to the transgenic nature of most Cre mouse strains undesired phenotypes occasionally occur in Cre mice. Here we report skeletal defects in Osterix-Cre (Osx-Cre) transgenic mice including delayed calvarial ossification and fracture calluses at multiple skeletal sites. These data suggest that Osx-Cre containing controls should be used for both in vivo and in vitro skeletal analyses of conditional knockout mice generated with this Osx-Cre mouse strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Chen J, Shi Y, Regan J, Karuppaiah K, Ornitz DM, Long F (2014) Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice. PLoS One 9(1):e85161

    Article  PubMed Central  PubMed  Google Scholar 

  • Davey RA, Clarke MV, Sastra S, Skinner JP, Chiang C, Anderson PH, Zajac JD (2012) Decreased body weight in young Osterix-Cre transgenic mice results in delayed cortical bone expansion and accrual. Transgenic Res 21(4):885–893

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, Arthur S, Xie M, Schneider MD, Zhai B, Gygi S, Davis R, Glimcher LH (2010) The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest 120(7):2457–2473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamiya N, Ye L, Kobayashi T, Mochida Y, Yamauchi M, Kronenberg HM, Feng JQ, Mishina Y (2008) BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development 135(22):3801–3811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764

    Article  CAS  PubMed  Google Scholar 

  • Kuhn R, Torres RM (2002) Cre/loxP recombination system and gene targeting. Methods Mol Biol 180:175–204

    CAS  PubMed  Google Scholar 

  • Lee GS, Liao X, Shimizu H, Collins MD (2010) Genetic and pathologic aspects of retinoic acid-induced limb malformations in the mouse. Birth Defects Res A Clin Mol Teratol 88(10):863–882

    Article  CAS  PubMed  Google Scholar 

  • Meisler MH (1992) Insertional mutation of ‘classical’ and novel genes in transgenic mice. Trends Genet 8(10):341–344

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29

    Article  CAS  PubMed  Google Scholar 

  • Ogata N, Shinoda Y, Wettschureck N, Offermanns S, Takeda S, Nakamura K, Segre GV, Chung UI, Kawaguchi H (2011) G alpha(q) signal in osteoblasts is inhibitory to the osteoanabolic action of parathyroid hormone. J Biol Chem 286(15):13733–13740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palmiter RD, Brinster RL (1986) Germ-line transformation of mice. Annu Rev Genet 20:465–499

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Baek WY, Kim YH, Kim JE (2011) In vivo expression of Osterix in mature granule cells of adult mouse olfactory bulb. Biochem Biophys Res Commun 407(4):842–847

    Article  CAS  PubMed  Google Scholar 

  • Rauch A, Seitz S, Baschant U, Schilling AF, Illing A, Stride B, Kirilov M, Mandic V, Takacz A, Schmidt-Ullrich R, Ostermay S, Schinke T, Spanbroek R, Zaiss MM, Angel PE, Lerner UH, David JP, Reichardt HM, Amling M, Schutz G, Tuckermann JP (2010) Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab 11(6):517–531

    Article  CAS  PubMed  Google Scholar 

  • Razidlo DF, Whitney TJ, Casper ME, McGee-Lawrence ME, Stensgard BA, Li X, Secreto FJ, Knutson SK, Hiebert SW, Westendorf JJ (2010) Histone deacetylase 3 depletion in osteo/chondroprogenitor cells decreases bone density and increases marrow fat. PLoS One 5(7):e11492

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodda SJ, McMahon AP (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133(16):3231–3244

    Article  CAS  PubMed  Google Scholar 

  • Starremans PG, Li X, Finnerty PE, Guo L, Takakura A, Neilson EG, Zhou J (2008) A mouse model for polycystic kidney disease through a somatic in-frame deletion in the 5′ end of Pkd1. Kidney Int 73(12):1394–1405

    Article  CAS  PubMed  Google Scholar 

  • Townes TM, Lingrel JB, Chen HY, Brinster RL, Palmiter RD (1985) Erythroid-specific expression of human beta-globin genes in transgenic mice. EMBO J 4(7):1715–1723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Y, Bradley A (2001) Engineering chromosomal rearrangements in mice. Nat Rev Genet 2(10):780–790

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Liang G, Huang Z, Doty SB, Boskey AL (2011) Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development. J Biol Chem 286(30):26794–26805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Nicholas Brady for micro CT analyses. We thank Naomi Fukai for help with technique-related work. We also thank Sofiya Plotkina for help with mouse genotyping. These studies were supported by grant AR36819 (to BRO) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Olsen, B.R. Skeletal defects in Osterix-Cre transgenic mice. Transgenic Res 24, 167–172 (2015). https://doi.org/10.1007/s11248-014-9828-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-014-9828-6

Keywords

Navigation