Skip to main content
Log in

The advances and perspectives of recombinant protein production in the silk gland of silkworm Bombyx mori

  • Review
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The silk gland of silkworm Bombyx mori, is one of the most important organs that has been fully studied and utilized so far. It contributes finest silk fibers to humankind. The silk gland has excellent ability of synthesizing silk proteins and is a kind tool to produce some useful recombinant proteins, which can be widely used in the biological, biotechnical and pharmaceutical application fields. It’s a very active area to express recombinant proteins using the silk gland as a bioreactor, and great progress has been achieved recently. This review recapitulates the progress of producing recombinant proteins and silk-based biomaterials in the silk gland of silkworm in addition to the construction of expression systems. Current challenges and future trends in the production of valuable recombinant proteins using transgenic silkworms are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi T, Tomita M, Shimizu K, Ogawa S, Yoshizato K (2006) Generation of hybrid transgenic silkworms that express Bombyx mori prolyl-hydroxylase alpha-subunits and human collagens in posterior silk glands: production of cocoons that contained collagens with hydroxylated proline residues. J Biotechnol 126:205–219

    Article  CAS  PubMed  Google Scholar 

  • Adachi T, Wang X, Murata T, Obara M, Akutsu H, Machida M, Umezawa A, Tomita M (2010) Production of a non-triple helical collagen alpha chain in transgenic silkworms and its evaluation as a gelatin substitute for cell culture. Biotechnol Bioeng 106:860–870

    Article  CAS  PubMed  Google Scholar 

  • Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  CAS  PubMed  Google Scholar 

  • Cannon JG (2000) Inflammatory cytokines in nonpathological states. News Physiol Sci 15:298–303

    CAS  PubMed  Google Scholar 

  • Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277:4223–4231

    Article  PubMed  Google Scholar 

  • Garel A, Deleage G, Prudhomme JC (1997) Structure and organization of the Bombyx mori sericin 1 gene and of the sericins 1 deduced from the sequence of the Ser 1B cDNA. Insect Biochem Mol Biol 27:469–477

    Article  CAS  PubMed  Google Scholar 

  • Hastings GE, Wolf PG (1992) The therapeutic use of albumin. Arch Fam Med 1:281–287

    Article  CAS  PubMed  Google Scholar 

  • Hino R, Tomita M, Yoshizato K (2006) The generation of germline transgenic silkworms for the production of biologically active recombinant fusion proteins of fibroin and human basic fibroblast growth factor. Biomaterials 27:5715–5724

    Article  CAS  PubMed  Google Scholar 

  • Holland C, Terry AE, Porter D, Vollrath F (2006) Comparing the rheology of native spider and silkworm spinning dope. Nat Mater 5:870–874

    Article  CAS  PubMed  Google Scholar 

  • Iizuka M, Tomita M, Shimizu K, Kikuchi Y, Yoshizato K (2008) Translational enhancement of recombinant protein synthesis in transgenic silkworms by a 5'-untranslated region of polyhedrin gene of Bombyx mori Nucleopolyhedrovirus. J Biosci Bioeng 105:595–603

  • Iizuka M, Ogawa S, Takeuchi A, Nakakita S, Kubo Y, Miyawaki Y, Hirabayashi J, Tomita M (2009) Production of a recombinant mouse monoclonal antibody in transgenic silkworm cocoons. FEBS J 276:5806–5820

    Article  CAS  PubMed  Google Scholar 

  • Iizuka T, Sezutsu H, Tatematsu K-i, Kobayashi I, Yonemura N, Uchino K, Nakajima K, Kojima K, Takabayashi C, Machii H, Yamada K, Kurihara H, Asakura T, Nakazawa Y, Miyawaki A, Karasawa S, Kobayashi H, Yamaguchi J, Kuwabara N, Nakamura T, Yoshii K, Tamura T (2013) Colored fluorescent silk made by transgenic silkworms. Adv Funct Mater 23:5232–5239

    Article  CAS  Google Scholar 

  • Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40517–40528

    Article  CAS  PubMed  Google Scholar 

  • Inoue S, Kanda T, Imamura M, Quan GX, Kojima K, Tanaka H, Tomita M, Hino R, Yoshizato K, Mizuno S, Tamura T (2005) A fibroin secretion-deficient silkworm mutant, Nd-sD, provides an efficient system for producing recombinant proteins. Insect Biochem Mol Biol 35:51–59

  • International Silkworm Genome Consortium (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38:1036–1045

    Article  Google Scholar 

  • Kato T, Kajikawa M, Maenaka K, Park EY (2010) Silkworm expression system as a platform technology in life science. Appl Microbiol Biotechnol 85:459–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL (2008) Spider silks and their applications. Trends Biotechnol 26:244–251

    Article  CAS  PubMed  Google Scholar 

  • Kojima K, Kuwana Y, Sezutsu H, Kobayashi I, Uchino K, Tamura T, Tamada Y (2007) A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Biosci Biotechnol Biochem 71:2943–2951

    Article  CAS  PubMed  Google Scholar 

  • Kurihara H, Sezutsu H, Tamura T, Yamada K (2007) Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system. Biochem Biophys Res Commun 355:976–980

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cao G, Wang Y, Xue R, Zhou W, Gong C (2011) Expression of the hIGF-I gene driven by the Fhx/P25 promoter in the silk glands of germline silkworm and transformed BmN cells. Biotechnol Lett 33:489–494

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Xu H, Zhu J, Ma S, Liu Y, Jiang RJ, Xia Q, Li S (2011) Ras1 CA overexpression in the posterior silk gland improves silk yield. Cell Res 21:934–943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma S, Zhang S, Wang F, Liu Y, Liu Y, Xu H, Liu C, Lin Y, Zhao P, Xia Q (2012) Highly efficient and specific genome editing in silkworm using custom TALENs. PLoS ONE 7:e45035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma S, Chang J, Wang X, Liu Y, Zhang J, Lu W, Gao J, Shi R, Zhao P, Xia Q (2014) CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori. Sci Rep 4:4489

    PubMed Central  PubMed  Google Scholar 

  • MacIntosh AC, Kearns VR, Crawford A, Hatton PV (2008) Skeletal tissue engineering using silk biomaterials. J Tissue Eng Regen Med 2:71–80

    Article  CAS  PubMed  Google Scholar 

  • Maeda S, Kawai T, Obinata M, Fujiwara H, Horiuchi T, Saeki Y, Sato Y, Furusawa M (1985) Production of human alpha-interferon in silkworm using a baculovirus vector. Nature 315:592–594

    Article  CAS  PubMed  Google Scholar 

  • Michaille JJ, Garel A, Prudhomme JC (1990) Cloning and characterization of the highly polymorphic Ser2 gene of Bombyx mori. Gene 86:177–184

    Article  CAS  PubMed  Google Scholar 

  • Nagano A, Tanioka Y, Sakurai N, Sezutsu H, Kuboyama N, Kiba H, Tanimoto Y, Nishiyama N, Asakura T (2011) Regeneration of the femoral epicondyle on calcium-binding silk scaffolds developed using transgenic silk fibroin produced by transgenic silkworm. Acta Biomater 7:1192–1201

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa Y, Sato M, Takahashi R, Aytemiz D, Takabayashi C, Tamura T, Enomoto S, Sata M, Asakura T (2011) Development of small-diameter vascular grafts based on silk fibroin fibers from Bombyx mori for vascular regeneration. J Biomater Sci Polym Ed 22:195–206

  • Ogawa S, Tomita M, Shimizu K, Yoshizato K (2007) Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production of recombinant human serum albumin. J Biotechnol 128:531–544

    Article  CAS  PubMed  Google Scholar 

  • Redwan ERM (2009) Animal-derived pharmaceutical proteins. J Immunoass Immunochem 30:262–290

    Article  CAS  Google Scholar 

  • Royer C, Jalabert A, Da Rocha M, Grenier AM, Mauchamp B, Couble P, Chavancy G (2005) Biosynthesis and cocoon-export of a recombinant globular protein in transgenic silkworms. Transgenic Res 14:463–472

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Kojima K, Sakuma C, Murakami M, Aratani E, Takenouchi T, Tamada Y, Kitani H (2012) Production of scFv-conjugated affinity silk powder by transgenic silkworm technology. PLoS ONE 7:e34632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sato M, Kojima K, Sakuma C, Murakami M, Tamada Y, Kitani H (2014) Production of scFv-conjugated affinity silk film and its application to a novel enzyme-linked immunosorbent assay. Sci Rep 4:4080

    Article  PubMed Central  PubMed  Google Scholar 

  • Shin S, Kim BY, Jeon HY, Lee A, Lee S, Sung SH, Park CS, Lee CK, Kong H, Song Y, Kim K (2014) Expression system for production of bioactive compounds, recombinant human adiponectin, in the silk glands of transgenic silkworms. Arch Pharm Res 37:645–651

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Zhang M, Xue R, Cao G, Gong C (2014) Reducing blood glucose levels in TIDM mice with an orally administered extract of sericin from hIGF-I-transgenic silkworm cocoons. Food Chem Toxicol 67:249–254

    Article  CAS  PubMed  Google Scholar 

  • Takasu Y, Yamada H, Tamura T, Sezutsu H, Mita K, Tsubouchi K (2007) Identification and characterization of a novel sericin gene expressed in the anterior middle silk gland of the silkworm Bombyx mori. Insect Biochem Mol Biol 37:1234–1240

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84

    Article  CAS  PubMed  Google Scholar 

  • Tatematsu K, Kobayashi I, Uchino K, Sezutsu H, Iizuka T, Yonemura N, Tamura T (2010) Construction of a binary transgenic gene expression system for recombinant protein production in the middle silk gland of the silkworm Bombyx mori. Transgenic Res 19:473–487

    Article  CAS  PubMed  Google Scholar 

  • Tateno M, Toyooka M, Shikano Y, Takeda S, Kuwabara N, Sezutsu H, Tamura T (2009) Production and characterization of the recombinant human mu-opioid receptor from transgenic silkworms. J Biochem 145:37–42

    Article  CAS  PubMed  Google Scholar 

  • Teulé F, Miao YG, Sohn BH, Kim YS, Hull JJ, Fraser MJ Jr, Lewis RV, Jarvis DL (2012) Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci U S A 109:923–928

    Article  PubMed Central  PubMed  Google Scholar 

  • Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21:52–56

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Hino R, Ogawa S, Iizuka M, Adachi T, Shimizu K, Sotoshiro H, Yoshizato K (2007) A germline transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon. Transgenic Res 16:449–465

    Article  CAS  PubMed  Google Scholar 

  • Vollrath F, Porter D (2009) Silks as ancient models for modern polymers. Polymer 50:5623–5632

    Article  CAS  Google Scholar 

  • Wang F, Xu H, Yuan L, Ma S, Wang Y, Duan X, Duan J, Xiang Z, Xia Q (2013a) An optimized sericin-1 expression system for mass-producing recombinant proteins in the middle silk glands of transgenic silkworms. Transgenic Res 22:925–938

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li Z, Xu J, Zeng B, Ling L, You L, Chen Y, Huang Y, Tan A (2013b) The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori. Cell Res 23:1414–1416

    Article  CAS  PubMed  Google Scholar 

  • Wen H, Lan X, Zhang Y, Zhao T, Wang Y, Kajiura Z, Nakagaki M (2010) Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol Biol Rep 37:1815–1821

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Cao C (2004) Targeting of human aFGF gene into silkworm, Bombyx mori L. through homologous recombination. J Zhejiang Univ Sci 5:644–650

    Article  CAS  PubMed  Google Scholar 

  • Wurm FM (2003) Human therapeutic proteins from silkworms. Nat Biotechnol 21:34–35

    Article  CAS  PubMed  Google Scholar 

  • Xue R, Chen H, Cui L, Cao G, Zhou W, Zheng X, Gong C (2012) Expression of hGM-CSF in silk glands of transgenic silkworms using gene targeting vector. Transgenic Res 21:101–111

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Zhu Z, Kobayashi I, Uchino K, Tamada Y, Tamura T, Asakura T (2007) Improving cell-adhesive properties of recombinant Bombyx mori silk by incorporation of collagen or fibronectin derived peptides produced by transgenic silkworms. Biomacromolecules 8:3487–3492

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Li X, Cao G, Xue R, Gong C (2009) Expression of hIGF-I in the silk glands of transgenic know silkworms and in transformed silkworm cells. Sci China C Life Sci 52:1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Zhao A, Zhao T, Zhang Y, Xia Q, Lu C, Zhou Z, Xiang Z, Nakagaki M (2010) New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Transgenic Res 19:29–44

    Article  PubMed  Google Scholar 

  • Zhu Z, Kikuchi Y, Kojima K, Tamura T, Kuwabara N, Nakamura T, Asakura T (2010) Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms. J Biomater Sci Polym Ed 21:395–411

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I’m very grateful to Professor Hongjuan Cui of Southwest University, China, for improving this manuscript. This work was supported by the National Basic Research Program of China (2012CB114600), and Grant (XDJK2014B014) from the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanfu Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H. The advances and perspectives of recombinant protein production in the silk gland of silkworm Bombyx mori . Transgenic Res 23, 697–706 (2014). https://doi.org/10.1007/s11248-014-9826-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-014-9826-8

Keywords

Navigation